Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Sampling Sites
2.2. PMF Methodology
2.2.1. PMF Model
2.2.2. Input Variable and Uncertainties
2.2.3. Set of Constraints
2.3. Criteria for Valid Solutions
- Evolution of the ratio Qtrue/Qrobust (<1.5). The solutions retained on all 15 sites have a Qtrue/Qrobust ratio of 1, indicating a zero impact of outliers on the results.
- The weighted residuals for most of the species have a normal centered distribution and between , indicating an overall good modeling of most variables.
- Evaluation of the statistical representativity of the solution and sensitivity to noise and single point in the data from the bootstrap test (BS) for 100 successive iterations of the model and for a minimum correlation of 0.6.
- Evaluation of the rotational ambiguity and sensitivity of the solution to small changes from (default dQ of the software) the Displacement Test (DISP) proposed by the software.
- Evaluation of the geochemical meaning and the physical reality of extracted factor profiles based on the knowledge of the chemical footprints of the sources, their specific tracers, the temporal variability (daily, weekly and seasonally), and the characteristics of the site studied.
- Statistical evaluation and precision for constrained solutions regarding the BS and %dQrobust as well as DISP.
2.4. Test of Similarity between Chemical Profiles
3. Results and Discussions
3.1. Identification of Factors
3.2. Major Source Contributors to PM
3.3. Seasonality of the Contributions
3.4. Uncertainties of PMF Factors
3.4.1. Statistical Stability of the Solutions
3.4.2. Uncertainties of the Profile Composition
Impacts of the Constraints on the Uncertainties
Composition Uncertainties in the Chemical Profiles
3.5. Estimation of the Uncertainties of Time Series Concentrations
3.6. Variability of the Chemical Profiles at the Regional Scale
3.6.1. Overall Comparison
3.6.2. A Non-Homogeneous Source: Primary Traffic
3.7. A Homogeneous Source: The Biomass Burning Source
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Kelly, F.J.; Fussell, J.C. Linking ambient particulate matter pollution effects with oxidative biology and immune responses: Oxidative stress, inflammation, and particulate matter toxicity. Ann. N. Y. Acad. Sci. 2015, 1340, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Lippman, M.; Chen, L.C.; Gordon, T.; Ito, K.; Thurston, G.D. National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components; Technical Report 177; Health Effects Institute: Boston, MA, USA, 2013. [Google Scholar]
- Srivastava, D.; Tomaz, S.; Favez, O.; Lanzafame, G.M.; Golly, B.; Besombes, J.L.; Alleman, L.Y.; Jaffrezo, J.L.; Jacob, V.; Perraudin, E.; et al. Speciation of organic fraction does matter for source apportionment. Part 1: A one-year campaign in Grenoble (France). Sci. Total Environ. 2018, 624, 1598–1611. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.; Querol, X.; Alastuey, A.; Harrison, R.; Hopke, P.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Simon, H.; Beck, L.; Bhave, P.V.; Divita, F.; Hsu, Y.; Luecken, D.; Mobley, J.D.; Pouliot, G.A.; Reff, A.; Sarwar, G.; et al. The development and uses of EPA’s SPECIATE database. Atmos. Pollut. Res. 2010, 1, 196–206. [Google Scholar] [CrossRef]
- Pernigotti, D.; Belis, C.A.; Spanò, L. SPECIEUROPE: The European data base for PM source profiles. Atmos. Pollut. Res. 2016, 7, 307–314. [Google Scholar] [CrossRef]
- Mooibroek, D.; Staelens, J.; Cordell, R.; Panteliadis, P.; Delaunay, T.; Weijers, E.; Vercauteren, J.; Hoogerbrugge, R.; Dijkema, M.; Monks, P.S.; et al. PM10 Source Apportionment in Five North Western European Cities—Outcome of the Joaquin Project; Airborne Particulate Matter; ECN: Petten, The Netherlands, 2016; pp. 264–292. [Google Scholar] [CrossRef]
- Perrone, M.G.; Zhou, J.; Malandrino, M.; Sangiorgi, G.; Rizzi, C.; Ferrero, L.; Dommen, J.; Bolzacchini, E. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmos. Environ. 2016, 128, 104–113. [Google Scholar] [CrossRef] [Green Version]
- El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.L. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille. Atmos. Chem. Phys. 2011, 11, 2039–2058. [Google Scholar] [CrossRef]
- El Haddad, I.; Marchand, N.; Temime-Roussel, B.; Wortham, H.; Piot, C.; Besombes, J.L.; Baduel, C.; Voisin, D.; Armengaud, A.; Jaffrezo, J.L. Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos. Chem. Phys. 2011, 11, 2059–2079. [Google Scholar] [CrossRef] [Green Version]
- Bressi, M.; Sciare, J.; Ghersi, V.; Mihalopoulos, N.; Petit, J.E.; Nicolas, J.B.; Moukhtar, S.; Rosso, A.; Féron, A.; Bonnaire, N.; et al. Sources and geographical origins of fine aerosols in Paris (France). Atmos. Chem. Phys. 2014, 14, 8813–8839. [Google Scholar] [CrossRef] [Green Version]
- Waked, A.; Favez, O.; Alleman, L.Y.; Piot, C.; Petit, J.E.; Delaunay, T.; Verlinden, E.; Golly, B.; Besombes, J.L.; Jaffrezo, J.L.; et al. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos. Chem. Phys. 2014, 14, 3325–3346. [Google Scholar] [CrossRef]
- Amodeo, T.; Favez, O.; Jaffrezo, J.L. Programmes De Recherche ExpéRimentaux Pour L’éTude Des Sources De PM en Air Ambiant; Etude Bibliographique DRC-16-159637-12364A; INERIS: Verneuil-en-Halatte, France, 2017. [Google Scholar]
- Favez, O.; Jaffrezo, J.L.; Salameh, D.; Amodeo, T. Etat Des Lieux Sur Les Connaissances ApportéEs Par Les éTudes ExpéRimentales Des Sources De Particules Fines En France—Projet SOURCES; Technical Report. ADEME, 2017. Available online: https://www.ademe.fr/sites/default/files/assets/documents/sources_particules-fines_ 2017_rapport.pdf (accessed on 10 May 2019).
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Ambient Air—Automated Measuring Systems for the Measurement of The Concentration of Particulate Matter (PM10; PM2.5); Technical Report EN 16450:2017; CEN: Paris, France, 2017.
- Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration Of Suspended Particulate Matter; Technical Report EN 12341:2014; CEN: Paris, France, 2014.
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Ambient Air—Standard Method for Measurement Of NO3−, SO42-, Cl−, NH4+, Na+, K+, Mg2+, Ca2+ in PM2.5 as Deposited on Filters; Technical Report EN 16913:2017; CEN: Paris, France, 2017.
- Jaffrezo, J.L.; Aymoz, G.; Delaval, C.; Cozic, J. Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps. Atmos. Chem. Phys. 2005, 5, 2809–2821. [Google Scholar] [CrossRef] [Green Version]
- Alleman, L.Y.; Lamaison, L.; Perdrix, E.; Robache, A.; Galloo, J.C. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 2010, 96, 612–625. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmos. Res. 2014, 135–136, 35–47. [Google Scholar] [CrossRef]
- Ambient Air Quality–Standard Method for the Measurement of Pb, Cd, As and Ni in the PM10 Fraction of Suspended Particulate Matter; Technical Report EN 14902:2005; CEN: Paris, France, 2005.
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; Technical Report; U.S. Environmental Protection Agency, National Exposure Research Laboratory: Washington, DC, USA, 2014.
- Paatero, P.; Hopke, P.K. Discarding or downweighting high-noise variables in factor analytic models. Anal. Chim. Acta 2003, 490, 277–289. [Google Scholar] [CrossRef]
- Samaké, A.; Jaffrezo, J.L.; Favez, O.; Weber, S.; Jacob, V.; Albinet, A.; Riffault, V.; Perdrix, E.; Waked, A.; Golly, B.; et al. Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmos. Chem. Phys. 2019, 19, 3357–3374. [Google Scholar] [CrossRef] [Green Version]
- Gianini, M.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Besombes, J.L.; Hueglin, C. Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by Positive Matrix Factorisation. Atmos. Environ. 2012, 54, 149–158. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Belis, C.A.; Favez, O.; Harrison, R.M.; Larsen, B.R.; Amato, F.; El Haddad, I.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévôt, A.; et al. European Guide on Air Pollution Source Apportionment with Receptor Models; OCLC: 875979269; European Commission, Joint Research Centre: Luxembourg, 2014. [Google Scholar]
- Belis, C.A.; Pernigotti, D.; Karagulian, F.; Pirovano, G.; Larsen, B.; Gerboles, M.; Hopke, P. A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises. Atmos. Environ. 2015, 119, 35–44. [Google Scholar] [CrossRef]
- Pernigotti, D.; Belis, C.A. DeltaSA tool for source apportionment benchmarking, description and sensitivity analysis. Atmos. Environ. 2018, 180, 138–148. [Google Scholar] [CrossRef]
- Favez, O.; Salameh, D.; Jaffrezo, J.L. Traitement Harmonisé De Jeux De DonnéEs Multi-Sites Pour L’éTude De Sources De PM par Positive Matrix Factorization (PMF). Technical Report; LCSQA. 2017. Available online: https://docplayer.fr/124547484-Traitement-harmonise-de-jeux-de-donnees-multi-sites-pour-l-etude-des-sources-de-pm-par-positive-matrix-factorization.html (accessed on 10 May 2019).
- Salameh, D.; Pey, J.; Bozzetti, C.; El Haddad, I.; Detournay, A.; Sylvestre, A.; Canonaco, F.; Armengaud, A.; Piga, D.; Robin, D.; et al. Sources of PM2.5 at an urban-industrial Mediterranean city, Marseille (France): Application of the ME-2 solver to inorganic and organic markers. Atmos. Res. 2018, 214, 263–274. [Google Scholar] [CrossRef]
- Salameh, D. Impacts AtmosphéRiques Des ActivitéS Portuaires Et Industrielles Sur Les Particules Fines (PM2.5) à Marseille. Ph.D. Thesis, Aix-Marseille Université, Marseille, France, 2015. [Google Scholar]
- Chevrier, F. Chauffage Au Bois Et Qualité De L’air en ValléE De l’Arve: DéFinition D’un SystèMe De Surveillance Et Impact D’une Politique De RéNovation Du Parc Des Appareils Anciens. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2016. [Google Scholar]
- Golly, B. ÉTude Des Sources Et De La Dynamique AtmosphéRique De Polluants Organiques Particulaires en ValléEs Alpines: Apport De Nouveaux Traceurs Organiques Aux ModèLes RéCepteurs. Ph.D. Thesis, University of Grenoble, Grenoble, France, 2014. [Google Scholar]
- Tolu, J.; Thiry, Y.; Bueno, M.; Jolivet, C.; Potin-Gautier, M.; Le Hécho, I. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci. Total. Environ. 2014, 479–480, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Luxem, K.E.; Vriens, B.; Behra, R.; Winkel, L.H.E. Studying selenium and sulfur volatilisation by marine algae Emiliania huxleyi and Thalassiosira oceanica in culture. Environ. Chem. 2017, 14, 199–206. [Google Scholar] [CrossRef]
- Amouroux, D.; Pécheyran, C.; Donard, O.F.X. Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Appl. Organomet. Chem. 2000, 14, 236–244. [Google Scholar] [CrossRef]
- Guo, X.; Sturgeon, R.E.; Mester, Z.; Gardner, G.J. Photochemical Alkylation of Inorganic Selenium in the Presence of Low Molecular Weight Organic Acids. Environ. Sci. Technol. 2003, 37, 5645–5650. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sturgeon, R.E.; Mester, Z.; Gardner, G.J. UV light-mediated alkylation of inorganic selenium. Appl. Organomet. Chem. 2003, 17, 575–579. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Sciare, J.; Canonaco, F.; Croteau, P.; Močnik, G.; Jayne, J.; Worsnop, D.; Leoz-Garziandia, E. Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2014, 14, 13773–13787. [Google Scholar] [CrossRef]
- Weber, S.; Uzu, G.; Calas, A.; Chevrier, F.; Besombes, J.L.; Charron, A.; Salameh, D.; Ježek, I.; Močnik, G.; Jaffrezo, J.L. An apportionment method for the oxidative potential of atmospheric particulate matter sources: Application to a one-year study in Chamonix, France. Atmos. Chem. Phys. 2018, 18, 9617–9629. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.C.; Haeffelin, M.; Leoz-Garziandia, E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2015, 15, 2985–3005. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.E.; Jantzem, E.; Nicolas, J.B.; Conil, S.; Sellegri, K.; Ockler, A. Black Carbon in Lorraine: Sources, geographical origins and model evaluation. J. Earth Sci. Geotech. Eng. 2017, 7, 319–331. [Google Scholar]
- Favez, O.; El Haddad, I.; Piot, C.; Boréave, A.; Abidi, E.; Marchand, N.; Jaffrezo, J.L.; Besombes, J.L.; Personnaz, M.B.; Sciare, J.; et al. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos. Chem. Phys. 2010, 10, 5295–5314. [Google Scholar] [CrossRef] [Green Version]
- Bonvalot, L.; Tuna, T.; Fagault, Y.; Jaffrezo, J.L.; Jacob, V.; Chevrier, F.; Bard, E. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: A dual approach based on radiocarbon and levoglucosan. Atmos. Chem. Phys. 2016, 16, 13753–13772. [Google Scholar] [CrossRef]
- Herich, H.; Gianini, M.F.D.; Piot, C.; Močnik, G.; Jaffrezo, J.L.; Besombes, J.L.; Prévôt, A.S.H.; Hueglin, C. Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmos. Environ. 2014, 89, 64–75. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 3. C1-C29 Organic Compounds from Fireplace Combustion of Wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef]
- Schmidl, C.; Marr, I.L.; Caseiro, A.; Kotianová, P.; Berner, A.; Bauer, H.; Kasper-Giebl, A.; Puxbaum, H. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos. Environ. 2008, 42, 126–141. [Google Scholar] [CrossRef]
Sampling Site | Code | Coordinates | Elevation | Period | N Samples | Typology |
---|---|---|---|---|---|---|
Revin | REV | 49°55′00.00″N 4°38′29.00″E | 395 m | 2 Jan 2013→1 Jun 2014 | 168 | remote |
Bordeaux-Talence | TAL | 44°48′ 2.01″N 0°35′17.01″W | 20 m | 2 Feb 2012→7 Apr 2013 | 154 | urban background |
Lyon | LY | 45°45′27.82″N 4°51′15.15″E | 160 m | 3 Jan 2012→31 Dec 2012 | 115 | urban background |
Poitiers | POI | 46°34′48.80″N 0°20′25.34″E | 106 m | 16 Nov 2014→29 Dec 2015 | 110 | urban background |
Nice | NIC | 43°42′7.48″N 7°17′10.53″E | 1 m | 4 Jun 2014→29 Jun 2016 | 184 | urban background |
Marseille | MRS | 43°18′18.84″N 5°23′40.89″E | 64 m | 11 Jan 2015→27 Jun 2016 | 102 | urban background |
Aix-en-Provence | PROV | 43°31′49.04″N 5°26′29.00″E | 180 m | 18 Jul 2013→13 Jul 2014 | 56 | urban background |
Nogent sur Oise | NGT | 49°16′35.00″N 2°28′56.00″E | 28 m | 2 Jan 2013→2 Jun 2014 | 155 | urban background |
Rouen | ROU | 49°25′41.40″N 1°3′29.10″E | 6 m | 2 Jan 2013→1 Jun 2014 | 162 | urban background |
Lens | LEN | 50°26′12.60″N 2°49′36.70″E | 47 m | 2 Jan 2013→1 Jun 2014 | 167 | urban background |
Grenoble | GRE | 45°9′42.84″N 5°44′8.15″E | 214 m | 2 Jan 2013→29 Dec 2014 | 240 | urban background & alpine valley |
Chamonix | CHAM | 45°55′21.00″N 6°52′12.00″E | 1038 m | 2 Nov 2013→31 Oct 2014 | 115 | urban background & alpine valley |
Port de Bouc | PdB | 43°24′7.99″N 4°58′55.99″E | 1 m | 1 Jun 2014→27 Jun 2016 | 185 | urban background & industrial |
Roubaix | RBX | 50°42′23.60″N 3°10′50.50″E | 10 m | 20 Feb 2013→26 May 2014 | 157 | urban traffic |
Strasbourg | STG | 48°34′24.25″N 7°45′7.60″E | 139 m | 2 Apr 2013→8 Apr 2014 | 78 | urban traffic |
Carbonaceous Species | Water-Soluble Ions and MSA | Organic Markers | Metals and Trace Elements | |
---|---|---|---|---|
Species | OC*, EC | MSA, Cl−, NO3−, SO42−, NH4+, K+, Mg2+, Ca2+ | Polyols, levoglucosan, mannosan | Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, La, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, V, Zn |
a coefficient | 0.03 | 0.05 | 0.01 | 0.15 |
Factor Profile | Species | Constraint | Value |
---|---|---|---|
Biomass burning | Levoglucosan | Pull up Maximally | %dQ 0.50 |
Biomass burning | Mannosan | Pull up Maximally | %dQ 0.50 |
Primary traffic | Levoglucosan | Set to 0 | 0 |
Primary traffic | Mannosan | Set to 0 | 0 |
Primary biogenic | Levoglucosan | Set to 0 | 0 |
Primary biogenic | Mannosan | Set to 0 | 0 |
Primary biogenic | Polyols | Pull up Maximally | %dQ 0.50 |
Primary biogenic | EC | Pull down Maximally | %dQ 0.50 |
Marine SOA | Levoglucosan | Set to 0 | 0 |
Marine SOA | Mannosan | Set to 0 | 0 |
Marine SOA | Polyols | Pull down Maximally | %dQ 0.50 |
Marine SOA | MSA | Pull up Maximally | %dQ 0.50 |
Marine SOA | EC | Pull down Maximally | %dQ 0.50 |
HFO combustion | Levoglucosan | Set to 0 | 0 |
HFO combustion | Mannosan | Set to 0 | 0 |
HFO combustion | Polyols | Set to 0 | 0 |
HFO combustion | MSA | Set to 0 | 0 |
Sea-salt | Ratio Mg2+/Na+ | Sea-salt ratio 0.119 | %dQ 0.50 |
Identified Factors | Specific Markers and Indicators |
---|---|
Biomass burning | Levoglucosan, mannosan, K+, OC, EC |
Primary traffic | EC, OC, Ba, Cr, Co, Cu, Fe, Mo, Pb, Sb, Sn, Zn |
Nitrate rich | NO3−, NH4+ |
Sulfate rich | SO42−, NH4+, Se, OC |
Primary biogenic | Polyols |
Marine SOA | MSA |
Dust | Ca2+, Al, Ba, Co, Cu, Fe, Mn, Pb, Sr, Ti, Zn |
Sea-salt | Na+, Mg2+, Ca2+, Cl− |
Aged sea-salt | Na+, Mg2+, NO3−, SO42− |
Industries | As, Cd, Cr, Cs, Co, Ni, Pb, Rb, Se, V, Zn |
Heavy fuel oil (HFO) | V, Ni, SO42−, EC |
Profiles | Base Cases | Constrained Cases | ||||
---|---|---|---|---|---|---|
Mean ± Std | Range | Unmapped | Mean ± Std | Range | Unmapped | |
Biomass burning (15) | 100.0 ± 0.0 | 100–100 | 0.0 | 100.0 ± 0.0 | 100–100 | 0.0 |
Nitrate rich (15) | 98.7 ± 2.8 | 89–100 | 0.2 | 99.9 ± 0.3 | 99–100 | 0.0 |
Primary biogenic (15) | 99.3 ± 1.3 | 96–100 | 0.0 | 99.8 ± 0.8 | 97–100 | 0.0 |
Marine SOA (14) | 95.9 ± 4.9 | 83–100 | 0.7 | 100.0 ± 0.0 | 100–100 | 0.0 |
Primary traffic (14) | 97.1 ± 4.8 | 85–100 | 0.0 | 98.7 ± 2.8 | 89–100 | 0.0 |
Aged sea-salt (13) | 95.8 ± 4.8 | 83–100 | 0.1 | 98.5 ± 2.7 | 91–100 | 0.1 |
Sulfate rich (13) | 93.4 ± 6.9 | 83–100 | 0.5 | 98.9 ± 1.8 | 95–100 | 0.1 |
Dust (12) | 94.1 ± 7.3 | 77–100 | 0.7 | 97.8 ± 4.8 | 83–100 | 0.1 |
Sea-salt (11) | 99.5 ± 1.5 | 95–100 | 0.0 | 99.8 ± 0.6 | 98–100 | 0.0 |
Industries (5) | 92.8 ± 8.5 | 80–100 | 1.0 | 98.4 ± 2.2 | 96–100 | 0.0 |
ROU—Primary Traffic | ||||||||
Run | Base | Constrained | ||||||
Species | OC* | EC | Cu | Fe | OC* | EC | Cu | Fe |
Reference | 1.605 | 0.541 | 0.0104 | 0.1986 | 1.649 | 0.592 | 0.0114 | 0.221 |
BS (5th–95th) | 0.792–1.654 | 0.334–0.541 | 0.007–0.011 | 0.108–0.232 | 1.232–1.845 | 0.493–0.641 | 0.009–0.013 | 0.159–0.264 |
DISP (min-max) | 1.426–1.912 | 0.480–0.644 | 0.009–0.012 | 0.178–0.229 | 1.576–1.837 | 0.572–0.666 | 0.011–0.012 | 0.210–0.236 |
GRE—Biomass Burning | ||||||||
Run | Base | Constrained | ||||||
Species | OC* | EC | Levoglucosan | K+ | OC* | EC | Levoglucosan | K+ |
Reference | 1.266 | 0.434 | 0.306 | 0.057 | 1.520 | 0.563 | 0.388 | 0.059 |
BS (5th–95th) | 1.061–1.505 | 0.372–0.614 | 0.269–0.362 | 0.039–0.067 | 1.347–1.640 | 0.492–0.672 | 0.412–0.434 | 0.039–0.070 |
DISP (min-max) | 1.100–1.363 | 0.378–0.480 | 0.275–0.319 | 0.050–0.061 | 1.456–1.589 | 0.539–0.604 | 0.408–0.439 | 0.058–0.059 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, S.; Salameh, D.; Albinet, A.; Alleman, L.Y.; Waked, A.; Besombes, J.-L.; Jacob, V.; Guillaud, G.; Meshbah, B.; Rocq, B.; et al. Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach. Atmosphere 2019, 10, 310. https://doi.org/10.3390/atmos10060310
Weber S, Salameh D, Albinet A, Alleman LY, Waked A, Besombes J-L, Jacob V, Guillaud G, Meshbah B, Rocq B, et al. Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach. Atmosphere. 2019; 10(6):310. https://doi.org/10.3390/atmos10060310
Chicago/Turabian StyleWeber, Samuël, Dalia Salameh, Alexandre Albinet, Laurent Y. Alleman, Antoine Waked, Jean-Luc Besombes, Véronique Jacob, Géraldine Guillaud, Boualem Meshbah, Benoit Rocq, and et al. 2019. "Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach" Atmosphere 10, no. 6: 310. https://doi.org/10.3390/atmos10060310
APA StyleWeber, S., Salameh, D., Albinet, A., Alleman, L. Y., Waked, A., Besombes, J. -L., Jacob, V., Guillaud, G., Meshbah, B., Rocq, B., Hulin, A., Dominik-Sègue, M., Chrétien, E., Jaffrezo, J. -L., & Favez, O. (2019). Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach. Atmosphere, 10(6), 310. https://doi.org/10.3390/atmos10060310