Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explosive Cyclone Overview
2.2. Data
2.3. Model Description
2.4. Piecewise PV Analysis
2.5. Experimental Design
3. Results and Discussion
3.1. Control Simulation
3.2. PPVI Results
3.2.1. Upper-Level Forcing
3.2.2. Condensational Heating
4. Conclusions and Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, K.O.; Yamashita, T.; Komaguchi, T.; Mishima, T. Abnormal storm waves in the winter East/Japan Sea: Generation process and hindcasting using an atmosphere-wind wave modelling system. Nat. Hazards Earth Syst. Sci. 2010, 10, 773–792. [Google Scholar] [CrossRef]
- Bullock, T.A.; Gyakum, J.R. A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon. Weather Rev. 1993, 121, 65–75. [Google Scholar] [CrossRef]
- Gyakum, J.R.; Anderson, J.R.; Grumm, R.H.; Gruner, E.L. North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Weather Rev. 1989, 117, 1141–1155. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Seo, Y.-W.; Ha, K.-J.; Park, K.-S.; Kim, J.; Choi, J.-W.; Jun, K.; Jeong, J.-Y. Development mechanisms of an explosive cyclone over East Sea on 3–4 April 2012. Dyn. Atmos. Oceans 2015, 70, 30–46. [Google Scholar] [CrossRef]
- Lim, E.-P.; Simmonds, I. Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Weather Rev. 2002, 130, 2188–2209. [Google Scholar] [CrossRef]
- Roebber, P.J. Statistical analysis and updated climatology of explosive cyclones. Mon. Weather Rev. 1984, 112, 1577–1589. [Google Scholar] [CrossRef]
- Roebber, P.J. On the statistical analysis of cyclone deepening rates. Mon. Weather Rev. 1989, 117, 2293–2298. [Google Scholar] [CrossRef]
- Sanders, F. Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–1984. Part I: Composite structure and mean behaviour. Mon. Weather Rev. 1986, 114, 1781–1794. [Google Scholar] [CrossRef]
- Yoshiike, S.; Kawamura, R. Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. J. Geophys. Res. 2009, 114, D13110. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Donall, E.G.; Neiman, P.J.; Fedor, L.S.; Gonzalez, N. Recent Refinements in the Conceptual Models of Extratropical Cyclones. In Proceedings of the 1st International Symposium on Winter Storms, New Orleans, LA, USA, 14–18 January 1991; AMS: Boston, MA, USA, 1991; pp. 6–14. [Google Scholar]
- Gómara, I.; Pinto, J.G.; Woollings, T.; Masato, G.; Zurita-Gotor, P.; Rodríguez-Fonseca, B. Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector. Q. J. R. Meteorol. Soc. 2014, 140, 738–753. [Google Scholar] [CrossRef]
- Hanley, J.; Caballero, R. The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys. Res. Lett. 2012, 39, L21708. [Google Scholar] [CrossRef]
- Pinto, J.G.; Gómara, I.; Masato, G.; Dacre, H.F.; Woollings, T.; Caballero, R. Large-scale dynamics associated with clustering of extratropical cyclones affecting western Europe. J. Geophys. Res.-Atmos. 2014, 119, 13704–13719. [Google Scholar] [CrossRef]
- Davis, C.A.; Emanuel, K.A. Observational evidence for the influence of surface heat fluxes on rapid maritime cyclogenesis. Mon. Weather Rev. 1988, 116, 2649–2659. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Low-Nam, S.; Reed, R.J. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Weather Rev. 1991, 127, 2564–2575. [Google Scholar] [CrossRef]
- Reed, R.J.; Grell, G.A.; Kuo, Y.-H. The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Weather Rev. 1993, 121, 1595–1612. [Google Scholar] [CrossRef]
- Brennan, M.J.; Lackmann, G.M. The Influence of Incipient Latent Heat Release on the Precipitation Distribution of the 24–25 January 2000 U.S. East Coast Cyclone. Mon. Weather Rev. 2005, 133, 1913–1937. [Google Scholar] [CrossRef]
- Browning, K.A. Conceptual models of precipitation systems. Weather Forecast. 1986, 1, 23–41. [Google Scholar] [CrossRef]
- Wernli, H. A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Q. J. R. Meteorol. Soc. 1997, 123, 1677–1706. [Google Scholar] [CrossRef]
- Schemm, S.; Wernli, H.; Papritz, L. Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations. J. Atmos. Sci. 2013, 70, 627–652. [Google Scholar] [CrossRef]
- Schemm, S.; Wernli, H. The Linkage between the Warm and the Cold Conveyor Belts in an Idealized Extratropical Cyclone. J. Atmos. Sci. 2014, 71, 1443–1459. [Google Scholar] [CrossRef]
- Binder, H.; Boettcher, M.; Joos, H.; Wernli, H. The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter. J. Atmos. Sci. 2016, 73, 3997–4020. [Google Scholar] [CrossRef]
- Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T. Influential Role of Moisture Supply from the Kuroshio/Kuroshio Extension in the Rapid Development of an Extratropical Cyclone. Mon. Weather Rev. 2015, 143, 4126–4144. [Google Scholar] [CrossRef]
- Fosdick, E.K.; Smith, P.J. Latent Heat Release in an Extratropical Cyclone that Developed Explosively over the Southeastern United States. Mon. Weather Rev. 1991, 119, 193–207. [Google Scholar] [CrossRef]
- Guo, J.T.; Fu, G.; Li, Z.L.; Shao, L.M.; Duan, Y.H.; Wang, J. Analyses and numerical modeling of a polar low over the Japan Sea on 19 December 2003. Atmos. Res. 2007, 85, 395–412. [Google Scholar] [CrossRef]
- Rasmussen, E.A.; Pedersen, T.S.; Pedersen, L.F.; Turner, J. Polar lows and arctic instability lows in the Bear Island region. Tellus 1992, 44, 133–154. [Google Scholar] [CrossRef]
- Neiman, P.J.; Shapiro, M.A. The Life Cycle of an Extratropical Marine Cyclone. Part I: Frontal-Cyclone Evolution and Thermodynamic Air-Sea Interaction. Mon. Weather Rev. 1993, 121, 2153–2176. [Google Scholar] [CrossRef]
- Neiman, P.J.; Shapiro, M.A.; Fedor, L.S. The Life Cycle of an Extratropical Marine Cyclone. Part II: Mesoscale Structure and Diagnostics. Mon. Weather Rev. 1993, 121, 2177–2199. [Google Scholar] [CrossRef] [Green Version]
- Yanase, W.; Fu, G.; Niino, H.; Kato, T. A Polar Low over the Japan Sea on 21 January 1997. Part II: A numerical study. Mon. Weather Rev. 2004, 132, 1552–1574. [Google Scholar] [CrossRef]
- Davis, C.A.; Emanuel, K.A. Potential vorticity diagnostics of cyclogenesis. Mon. Weather Rev. 1991, 119, 1929–1953. [Google Scholar] [CrossRef]
- Wu, L.; Martin, J.E.; Petty, G.W. Piecewise potential vorticity diagnosis of the development of a polar low over the Sea of Japan. Tellus 2011, 63, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, A.; Asuma, Y. Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Weather Rev. 2004, 132, 1121–1142. [Google Scholar] [CrossRef]
- Yamamoto, M. Migration of contact binary cyclones and atmospheric river: Case of explosive extratropical cyclones in East Asia on December 16, 2014. Dyn. Atmos. Oceans 2018, 83, 17–40. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Yamamoto, M. Influences of surface heat flux on twin cyclone structure during their explosive development over the East Asian marginal seas on 23 January 2008. Weather Clim. Extrem. 2019, 23, 100198. [Google Scholar] [CrossRef]
- Reed, R.J.; Albright, M.D. A Case Study of Explosive Cyclogenesis in the Eastern Pacific. Mon. Weather Rev. 1986, 114, 2297–2319. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.A.; Gray, S.L. Sting jets in extratropical cyclones: A review. Q. J. R. Meteorol. Soc. 2018, 144, 943–969. [Google Scholar] [CrossRef]
- Browning, K.A. The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q. J. R. Meteorol. Soc. 2004, 130, 375–399. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF, 3rd ed.; NCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.-Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3101. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Ertel, H. Ein neuer hydrodynamischer wirbelsatz. Meteorol. Z. 1942, 59, 271–281. [Google Scholar]
- Rossby, C.G. Planetary flow patterns in the atmosphere. Q. J. R. Meteorol. Soc. 1940, 66, 68–87. [Google Scholar]
- Charney, J.G. The use of primitive equations of motion in numerical prediction. Tellus 1955, 7, 22–26. [Google Scholar] [CrossRef]
- Davis, C.A.; Grell, E.D.; Shapiro, M.A. The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Weather Rev. 1996, 124, 3–26. [Google Scholar] [CrossRef]
- Martin, J.E.; Otkin, J.A. The Rapid Growth and Decay of an Extratropical Cyclone over the Central Pacific Ocean. Weather Forecast. 2004, 19, 358–376. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A. Piecewise potential vorticity inversion. J. Atmos. Sci. 1992, 49, 1397–1411. [Google Scholar] [CrossRef]
- Fu, S.; Sun, J.; Sun, J. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: A piecewise potential vorticity diagnosis. Tellus A 2014, 66, 23210. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, D.-L.; Gyakum, J.R. Interaction of Potential Vorticity Anomalies in Extratropical Cyclogenesis. Part II: Sensitivity to Initial Perturbations. Mon. Weather Rev. 1999, 116, 2649–2659. [Google Scholar] [CrossRef]
- Baxter, M.A.; Schumacher, P.N.; Boustead, J.M. The use of potential vorticity inversion to evaluate the effect of precipitation on downstream mesoscale processes. Q. J. R. Metorol. Soc. 2011, 137, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Čampa, J.; Wernli, H. A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci. 2012, 69, 725–740. [Google Scholar] [CrossRef]
- Seiler, C. A Climatological Assessment of Intense Extratropical Cyclones from the Potential Vorticity Perspective. J. Clim. 2019, 32, 2369–2380. [Google Scholar] [CrossRef]
- Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T. A Positive Feedback Process Related to the Rapid Development of an Extratropical Cyclone over the Kuroshio/Kuroshio Extension. Mon. Weather Rev. 2018, 146, 417–433. [Google Scholar] [CrossRef]
Model Used | WRF v.3.7.1 |
---|---|
Initial and boundary conditions | NCEP FNL 1° × 1° (6-h interval) |
Horizontal and vertical resolution | Domain 1: 20 km × 20 km, 40 layers to 30 hPa Domain 2: 4 km × 4 km, 40 layers to 30 hPa |
Horizontal grid points in the X–Y direction | Domain 1: 218 × 218, Domain 2: 361 × 361 |
Period of integration | 72 h |
Cumulus parameterization schemes | Domain 1: Kain–Fritsch scheme Domain 2: no scheme |
Planetary boundary layer parameterization scheme | YSU PBL scheme |
Microphysics parameterization scheme | WSM 6-class graupel scheme |
Radiation parameterization schemes | Dudhia short-wave and RRTM long-wave radiation scheme |
Surface-layer scheme | Monin–Obukhov similarity theory |
Land surface scheme | Noah Land Surface Model scheme |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, K.-Y.; Ha, K.-J.; Ha, T. Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere 2019, 10, 322. https://doi.org/10.3390/atmos10060322
Heo K-Y, Ha K-J, Ha T. Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere. 2019; 10(6):322. https://doi.org/10.3390/atmos10060322
Chicago/Turabian StyleHeo, Ki-Young, Kyung-Ja Ha, and Taemin Ha. 2019. "Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations" Atmosphere 10, no. 6: 322. https://doi.org/10.3390/atmos10060322
APA StyleHeo, K. -Y., Ha, K. -J., & Ha, T. (2019). Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere, 10(6), 322. https://doi.org/10.3390/atmos10060322