Pollution Events at the High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.), Germany
Abstract
:1. Introduction
2. Material and Methods
2.1. Measurement Site
2.2. Analyzers and Sampling Systems
2.3. Keeling Plot Method
2.4. Emission Ratio
2.5. HYSPLIT Trajectory Model
2.6. PSCF
3. Results and Discussion
3.1. δ13C(CO2) and Keeling Plot
3.2. CO/CO2 Emission Ratios
3.3. CH4/CO2 Emission Ratios
3.4. Backward Trajectories
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- World Meteorological Organization (WMO). Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Yuan, Y.; Ries, L.; Petermeier, H.; Steinbacher, M.; Gómez-Peláez, A.J.; Leuenberger, M.C.; Schumacher, M.; Trickl, T.; Couret, C.; Meinhardt, F. Adaptive selection of diurnal minimum variation: A statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations. Atmos. Meas. Tech. 2018, 11, 1501–1514. [Google Scholar] [CrossRef]
- Ghasemifard, H.; Yuan, Y.; Luepke, M.; Schunk, C.; Chen, J.; Ries, L.; Leuchner, M.; Menzel, A. Atmospheric CO2 and δ13C Measurements from 2012 to 2014 at the Environmental Research Station Schneefernerhaus, Germany: Technical Corrections, Temporal Variations and Trajectory Clustering. Aerosol Air Qual. Res. 2019, 19, 657–670. [Google Scholar] [CrossRef]
- Yuan, Y.; Ries, L.; Petermeier, H.; Trickl, T.; Leuchner, M.; Couret, C.; Sohmer, R.; Meinhardt, F.; Menzel, A. On the diurnal, weekly, seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany during 1981–2016. Atmos. Chem. Phys. 2019, 19, 999–1012. [Google Scholar] [CrossRef]
- Apadula, F.; Gotti, A.; Pigini, A.; Longhetto, A.; Rocchetti, F.; Cassardo, C.; Ferrarese, S.; Forza, R. Localization of source and sink regions of carbon dioxide through the method of the synoptic air trajectory statistics. Atmos. Environ. 2003, 37, 3757–3770. [Google Scholar] [CrossRef]
- Kaiser, A.; Scheifinger, H.; Spangl, W.; Weiss, A.; Gilge, S.; Fricke, W.; Ries, L.; Cemas, D.; Jesenovec, B. Transport of nitrogen oxides, carbon monoxide and ozone to the alpine global atmosphere watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeißenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmos. Environ. 2007, 41, 9273–9287. [Google Scholar] [CrossRef]
- Uglietti, C.; Leuenberger, M.; Brunner, D. European source and sink areas of CO2 retrieved from Lagrangian transport model interpretation of combined O2 and CO2 measurements at the high alpine research station Jungfraujoch. Atmos. Chem. Phys. 2011, 11, 8017–8036. [Google Scholar] [CrossRef]
- Tuzson, B.; Henne, S.; Brunner, D.; Steinbacher, M.; Mohn, J.; Buchmann, B.; Emmenegger, L. Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: Real-time observation of regional pollution events. Atmos. Chem. Phys. 2011, 11, 1685–1696. [Google Scholar] [CrossRef]
- Ferrarese, S.; Apadula, F.; Bertiglia, F.; Cassardo, C.; Ferrero, A.; Fialdini, L.; Francone, C.; Heltai, D.; Lanza, A.; Longhetto, A. Inspection of high–concentration CO2 events at the Plateau Rosa Alpine station. Atmos. Pollut. Res. 2015, 6, 415–427. [Google Scholar] [CrossRef]
- Levin, I.; Graul, R.; Trivett, N.B. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus B 1995, 47, 23–34. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Phys. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Mook, W.; Bommerson, J.; Staverman, W. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci. Lett. 1974, 22, 169–176. [Google Scholar] [CrossRef]
- Ciais, P.; Tans, P.P.; White, J.W.; Trolier, M.; Francey, R.J.; Berry, J.A.; Randall, D.R.; Sellers, P.J.; Collatz, J.G.; Schimel, D.S. Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res. Atm. 1995, 100, 5051–5070. [Google Scholar] [CrossRef]
- Pataki, D.E.; Ehleringer, J.R.; Flanagan, L.B.; Yakir, D.; Bowling, D.R.; Still, C.J.; Buchmann, N.; Kaplan, J.O.; Berry, J.A. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Wen, X.; Sun, X. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Sci. Total Environ. 2016, 539, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Pataki, D.E.; Xu, T.; Luo, Y.Q.; Ehleringer, J. Inferring biogenic and anthropogenic carbon dioxide sources across an urban to rural gradient. Oecologia 2007, 152, 307–322. [Google Scholar] [CrossRef]
- Wada, R.; Pearce, J.K.; Nakayama, T.; Matsumi, Y.; Hiyama, T.; Inoue, G.; Shibata, T. Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy. Atmos. Environ. 2011, 45, 1168–1174. [Google Scholar] [CrossRef]
- Pfister, G.; Petron, G.; Emmons, L.K.; Gille, J.C.; Edwards, D.P.; Lamarque, J.-F.; Attie, J.-L.; Granier, C.; Novelli, P.C. Evaluation of CO simulations and the analysis of the CO budget for Europe. J. Geophys. Res. Atm. 2004, 109. [Google Scholar] [CrossRef]
- Levin, I.; Karstens, U. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B 2007, 59, 245–250. [Google Scholar] [CrossRef]
- Vardag, S.N.; Gerbig, C.; Janssens-Maenhout, G.; Levin, I. Estimation of continuous anthropogenic CO2: Model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods. Atmos. Chem. Phys. 2015, 15, 12705–12729. [Google Scholar] [CrossRef]
- Vogel, F.; Hammer, S.; Steinhof, A.; Kromer, B.; Levin, I. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 ata moderately polluted site in southwestern Germany. Tellus B 2010, 62, 512–520. [Google Scholar] [CrossRef]
- Popa, M.E.; Vollmer, M.K.; Jordan, A.; Brand, W.A.; Pathirana, S.L.; Rothe, M.; Röckmann, T. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO. Atmos. Chem. Phys. 2014, 14, 2105–2123. [Google Scholar] [CrossRef]
- Schmidt, A.; Rella, C.W.; Göckede, M.; Hanson, C.; Yang, Z.; Law, B.E. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling. Atmos. Environ. 2014, 97, 94–108. [Google Scholar] [CrossRef]
- Thom, M.; Bösinger, R.; Schmidt, M.; Levin, I. The regional budget of atmospheric methane of a highly populated area. Chemosphere 1993, 26, 143–160. [Google Scholar] [CrossRef]
- Nam, E.K.; Jensen, T.E.; Wallington, T.J. Methane emissions from vehicles. Environ. Sci. Technol. 2004, 38, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, F.; Tsunogai, U.; Komatsu, D.D.; Yamada, K.; Yoshida, N.; Moriizumi, J.; Nagamine, K.; Iida, T.; Ikebe, Y. Automobile exhaust as a source of 13C-and D-enriched atmospheric methane in urban areas. Org. Geochem. 2005, 36, 727–738. [Google Scholar] [CrossRef]
- Tohjima, Y.; Kubo, M.; Minejima, C.; Mukai, H.; Tanimoto, H.; Ganshin, A.; Maksyutov, S.; Katsumata, K.; Machida, T.; Kita, K. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys. 2014, 14, 1663–1677. [Google Scholar] [CrossRef]
- Worthy, D.E.; Chan, E.; Ishizawa, M.; Chan, D.; Poss, C.; Dlugokencky, E.J.; Maksyutov, S.; Levin, I. Decreasing anthropogenic methane emissions in Europe and Siberia inferred from continuous carbon dioxide and methane observations at Alert, Canada. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.-X.; Luan, T.; Zhang, G.; Wu, Y.-L.; Yu, D.-J. The determination of regional CO2 mole fractions at the Longfengshan WMO/GAW station: A comparison of four data filtering approaches. Atmos. Environ. 2015, 116, 36–43. [Google Scholar] [CrossRef]
- Henne, S.; Brunner, D.; Folini, D.; Solberg, S.; Klausen, J.; Buchmann, B. Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys. 2010, 10, 3561–3581. [Google Scholar] [CrossRef] [Green Version]
- Gantner, L.; Hornsteiner, M.; Egger, J.; Hartjenstein, G. The diurnal circulation of Zugspitzplatt: Observations and modeling. Meteorol. Z. 2003, 12, 95–102. [Google Scholar] [CrossRef]
- Leuchner, M.; Ghasemifard, H.; Lüpke, M.; Ries, L.; Schunk, C.; Menzel, A. Seasonal and diurnal variation of formaldehyde and its meteorological drivers at the GAW site Zugspitze. Aerosol Air Qual. Res. 2016, 16, 801–815. [Google Scholar] [CrossRef]
- Zellweger, C.; Forrer, J.; Hofer, P.; Nyeki, S.; Schwarzenbach, B.; Weingartner, E.; Ammann, M.; Baltensperger, U. Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere. Atmos. Chem. Phys. 2003, 3, 779–796. [Google Scholar] [CrossRef]
- GAWSIS. Station Information System. Available online: https://gawsis.meteoswiss.ch/GAWSIS/ (accessed on 17 June 2019).
- Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.W. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy. Atmos. Meas. Tech. 2012, 5, 2689–2701. [Google Scholar] [CrossRef]
- Pang, J.; Wen, X.; Sun, X.; Huang, K. Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2/12CO2 measurement. Atmos. Meas. Tech. 2016, 9, 3879–3891. [Google Scholar] [CrossRef]
- Rella, C.W.; Chen, H.; Andrews, A.E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N.L.; Richardson, S.J.; Steinbacher, M.; et al. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech. 2013, 6, 837–860. [Google Scholar] [CrossRef] [Green Version]
- Vogel, F.R.; Huang, L.; Ernst, D.; Giroux, L.; Racki, S.; Worthy, D.E. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2. Atmos. Meas. Tech. 2013, 6, 301–308. [Google Scholar] [CrossRef]
- Wen, X.-F.; Meng, Y.; Zhang, X.-Y.; Sun, X.-M.; Lee, X. Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/12CO2; measurement. Atmos. Meas. Tech. 2013, 6, 1491–1501. [Google Scholar] [CrossRef]
- Team, R. RStudio: Integrated Development for R; R Studio Inc.: Boston, MA, USA, 2016; Available online: http://www.rstudio.com/ (accessed on 7 March 2019).
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Modell. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Wickham, H. GGPLOT2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2010. [Google Scholar]
- Keeling, C.D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta 1958, 13, 322–334. [Google Scholar] [CrossRef]
- Keeling, C.D. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 1961, 24, 277–298. [Google Scholar] [CrossRef]
- Vardag, S.N.; Hammer, S.; Levin, I. Evaluation of 4 years of continuous 13C(CO2) data using a moving Keeling plot method. Biogeosciences 2016, 13, 4237–4251. [Google Scholar] [CrossRef]
- Miller, J.B.; Tans, P.P. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B 2003, 55, 207–214. [Google Scholar] [CrossRef]
- Krystek, M.; Anton, M. A weighted total least-squares algorithm for fitting a straight line. Meas. Sci. Tech. 2007, 18, 3438. [Google Scholar] [CrossRef]
- Ammoura, L.; Xueref-Remy, I.; Gros, V.; Baudic, A.; Bonsang, B.; Petit, J.-E.; Perrussel, O.; Bonnaire, N.; Sciare, J.; Chevallier, F. Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: A tunnel study in the Paris megacity. Atmos. Chem. Phys. 2014, 14, 12871–12882. [Google Scholar] [CrossRef]
- Xueref-Remy, I.; Messager, C.; Filippi, D.; Pastel, M.; Nedelec, P.; Ramonet, M.; Paris, J.D.; Ciais, P. Variability and budget of CO2 in Europe: Analysis of the CAATER airborne campaigns—Part 1: Observed variability. Atmos. Chem. Phys. 2011, 11, 5655–5672. [Google Scholar] [CrossRef]
- Necki, J.; Schmidt, M.; Rozanski, K.; Zimnoch, M.; Korus, A.; Lasa, J.; Graul, R.; Levin, I. Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus B 2003, 55, 94–104. [Google Scholar] [CrossRef]
- Schmidt, M.; Graul, R.; Sartorius, H.; Levin, I. Carbon dioxide and methane in continental Europe: A climatology, and 222Radon-based emission estimates. Tellus B 1996, 48, 457–473. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Met. Mag. 1998, 47, 295–308. [Google Scholar]
- Stohl, A. Trajectory statistics—A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Vollmer, M.K.; Juergens, N.; Steinbacher, M.; Reimann, S.; Weilenmann, M.; Buchmann, B. Road vehicle emissions of molecular hydrogen (H2) from a tunnel study. Atmos. Environ. 2007, 41, 8355–8369. [Google Scholar] [CrossRef]
- European Environment Agency. Greenhouse Gas Emission Trends and Projections in Europe 2012; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Sturm, P.; Tuzson, B.; Henne, S.; Emmenegger, L. Tracking isotope signatire of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: Analytical improvements and respective results. Atmos. Meas. Tech. 2013, 6, 1659–1671. [Google Scholar] [CrossRef]
Filter Criteria | Rationale |
---|---|
Monotonous CO2 increase over 5 h | Reasons for a decrease could be a simultaneously occurring sink or a boundary layer break-up, both hurting the prerequisites of a Keeling plot. |
Error of intercept < 2‰ | Changes of mean source mix due to change of emission characteristics, background or footprint area show a non-linear behavior in a Keeling plot. Thus, choosing a maximum error of the intercept, δS of <2‰, can filter out these situations. |
Episode | Day | Month-Year | Total Duration (h) | Duration until the Maximum of CO2 (h) |
---|---|---|---|---|
E1 | 09 | 10-2012 | 9 | 5 |
E2 | 10 | 10-2012 | 6 | 3 |
E3 | 27–28 | 10-2012 | 25 | 9 |
E4 | 28–30 | 11-2012 | 62 | 9 |
E5 | 15–18 | 01-2013 | 91 | 43 |
E6 | 25 | 01-2013 | 20 | 10 |
E7 | 19–21 | 02-2013 | 42 | 10 |
Reference | CO/CO2 (ppb/ppm) | Location | Environment | Year |
---|---|---|---|---|
Vollmer at al. (2007) [57] | 9.19 ± 3.74 | Switzerland | tunnel | 2004 |
Vogel et al. (2010) [22] | 13.5 ± 2.5 | Germany | city | 2002–2009 |
Tuzson et al. (2011) [9] | 9.35 ± 2.66 | Switzerland | remote site | 2009 |
Popa et al. (2014) [23] | 4.15 ± 0.34 | Switzerland | tunnel | 2011 |
Ammoura et al. (2014) [49] | 5.68 ± 2.43 | France | tunnel | 2012 |
This study | 6.02 ± 0.12 | Germany | remote site | 2012–2013 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemifard, H.; Vogel, F.R.; Yuan, Y.; Luepke, M.; Chen, J.; Ries, L.; Leuchner, M.; Schunk, C.; Noreen Vardag, S.; Menzel, A. Pollution Events at the High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.), Germany. Atmosphere 2019, 10, 330. https://doi.org/10.3390/atmos10060330
Ghasemifard H, Vogel FR, Yuan Y, Luepke M, Chen J, Ries L, Leuchner M, Schunk C, Noreen Vardag S, Menzel A. Pollution Events at the High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.), Germany. Atmosphere. 2019; 10(6):330. https://doi.org/10.3390/atmos10060330
Chicago/Turabian StyleGhasemifard, Homa, Felix R. Vogel, Ye Yuan, Marvin Luepke, Jia Chen, Ludwig Ries, Michael Leuchner, Christian Schunk, Sanam Noreen Vardag, and Annette Menzel. 2019. "Pollution Events at the High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.), Germany" Atmosphere 10, no. 6: 330. https://doi.org/10.3390/atmos10060330
APA StyleGhasemifard, H., Vogel, F. R., Yuan, Y., Luepke, M., Chen, J., Ries, L., Leuchner, M., Schunk, C., Noreen Vardag, S., & Menzel, A. (2019). Pollution Events at the High-Altitude Mountain Site Zugspitze-Schneefernerhaus (2670 m a.s.l.), Germany. Atmosphere, 10(6), 330. https://doi.org/10.3390/atmos10060330