Transport Pathways and Potential Source Regions of PM2.5 on the West Coast of Bohai Bay during 2009–2018
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Location and Data
2.2. Backward Trajectory and Cluster Analysis
2.3. Potential Source Contribution Function (PSCF)
2.4. Concentration Weighted Trajectory (CWT)
3. Results and Discussions
3.1. Variation in PM2.5 Concentrations
3.2. Transport Pathways
3.3. Wind Dependence of PM2.5 Loadings
3.4. Potential Source Regions
3.5. Comparison to Anthropogenic Emissions Inventory
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, C.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Shao, M.; Tang, X.; Zhang, Y.; Li, W. City clusters in China: Air and surface water pollution. Front. Ecol. Environ. 2006, 4, 353–361. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar] [CrossRef]
- Fang, M.; Chan, C.K.; Yao, X. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009, 43, 79–86. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Y.; Cai, X. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000–2004. Sci. Total Environ. 2007, 376, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Alolayan, M.A.; Brown, K.W.; Evans, J.S.; Bouhamra, W.S.; Koutrakis, P. Source apportionment of fine particles in kuwait city. Sci. Total Environ. 2013, 448, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Hellack, B.; Quass, U.; Beuck, H.; Wick, G.; Kuttler, W.; Schins, R.P.; Kuhlbusch, T.A. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses. Atmos. Environ. 2015, 105, 1–6. [Google Scholar] [CrossRef]
- Makra, L.; Ionel, I.; Csépe, Z.; Matyasovszky, I.; Lontis, N.; Popescu, F.; Sümeghy, Z. The effect of different transport modes on urban PM10 levels in two European cities. Sci. Total Environ. 2013, 458, 36–46. [Google Scholar] [CrossRef]
- Kong, X.; He, W.; Qin, N.; He, Q.; Yang, B.; Ouyang, H.; Wang, Q.; Xu, F. Comparison of transport pathways and potential sources of PM10 in two cities around a large Chinese lake using the modified trajectory analysis. Atmos. Res. 2013, 122, 284–297. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2014, 13, 7053–7074. [Google Scholar] [CrossRef]
- Lai, L.W. Fine particulate matter events associated with synoptic weather patterns, long-range transport paths and mixing height in the Taipei basin, Taiwan. Atmos. Environ. 2015, 113, 50–62. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, B.; Bai, Y. A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012. Atmos. Environ. 2016, 124, 98–108. [Google Scholar] [CrossRef]
- Fuelberg, H.E.; Kiley, C.M.; Hannan, J.R.; Westberg, D.J.; Avery, M.A.; Newell, R.E. Meteorological conditions and transport pathways during the transport and chemical evolution over the pacific (trace-p) experiment. J. Geophys. Res. Atmos. 2003, 108, 8782. [Google Scholar] [CrossRef]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Xian, P.; Posselt, D.J.; Simpas, J.B.; et al. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study–Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmos. Chem. Phys. 2016, 16, 14057–14078. [Google Scholar] [CrossRef]
- He, K.; Huo, H.; Zhang, Q. Urban air pollution in China: Current status, characteristics, and progress. Annu. Rev. Energy Environ. 2011, 27, 397–431. [Google Scholar] [CrossRef]
- Wang, G.C.; Wang, J.; Xin, Y.J.; Chen, L. Transportation pathways and potential source areas of PM10 and NO2 in Tianjin. China. Environ. Sci 2014, 34, 3009–3016. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Sci. Total Environ. 2006, 368, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.J.; Wang, G.C.; Chen, L. Identification of long-range transport pathways and potential sources of PM10 in Tibetan Plateau uplift area: Case study of Xining, China in 2014. Aerosol Air Qual. Res. 2016, 16, 1044–1054. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, X.; Shi, H.; Cai, X.; Song, Y. Transport pathways and potential sources of PM10 in Beijing. Atmos. Environ. 2011, 45, 594–604. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.Q.; Ma, C.; Wang, Y.J. Variability in transport pathways and source areas of PM10 in Beijing during 2009–2012. Aerosol Air Qual. Res. 2016, 16, 3130–3141. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Sun, Y.; Ji, D.; Wang, Y. Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmos. Res. 2015, 157, 37–48. [Google Scholar] [CrossRef]
- Ashbaugh, L. A statistical trajectory technique for determining air pollution source regions. J. Air Pollut. Control Assoc. 1983, 33, 1096–1098. [Google Scholar] [CrossRef]
- Sirois, A.; Bottenheim, J.W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. Atmos. 1995, 100, 2867–2881. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, K.H.; Kim, Y.J.; Kim, T.Y.; Cho, S.Y.; Kim, S.J. High time-resolution measurements of carbonaceous species in PM2.5 at an urban site of Korea. Atmos. Res. 2008, 89, 48–61. [Google Scholar] [CrossRef]
- Moody, J.L.; Galloway, J.N. Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus B 1988, 40, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.M.; Kahl, J.D. A descriptive atmospheric transport climatology for the Mauna Loa Observatory, using clustered trajectories. J. Geophys. Res. Atmos. 1990, 95, 13651–13667. [Google Scholar] [CrossRef]
- Dorling, S.R.; Davies, T.D.; Pierce, C.E. Cluster analysis: A technique for estimating the synoptic meteorological controls on air and precipitation chemistry-method and applications. Atmos. Environ. 1992, 26, 2575–2581. [Google Scholar] [CrossRef]
- Vasconcelos, L.A.D.P.; Kahl, J.D.W.; Liu, D.; Macias, E.S.; White, W.H. Spatial resolution of a transport inversion technique. J. Geophys. Res. Atmos. 1996, 101, 19337–19342. [Google Scholar] [CrossRef]
- Seibert, P.; Kromp-Kolb, H.; Baltensperger, U.; Jost, D.T.; Schwikowski, M.; Kasper, A.; Puxbaum, H. Trajectory analysis of aerosol measurements at high alpine sites. In Transport and Transformation of Pollutants in the Troposphere; Borrel, P.M., Borrel, P., Cvitas, T., Seiler, W., Eds.; Academic Publishing: Den Haag, The Netherlands, 1994; pp. 689–693. [Google Scholar]
- Stohl, A. Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Sun, Y.; Song, T.; Tang, G.; Wang, Y. The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ. 2013, 74, 413–421. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. Trajstat: Gis-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Environmental Protection Department, State Administration of Quality Supervision, Inspection and Quarantine. Ambient Air Quality Standards. In The State Standard of the People’s Republic of China GB; Environmental Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Zeng, Y.; Hopke, P.K. A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Begum, B.A.; Kim, E.; Jeong, C.H.; Lee, D.W.; Hopke, P.K. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef] [PubMed]
- Polissar, A.V.; Hopke, P.K.; Poirot, R.L. Atmospheric aerosol over Vermont: Chemical composition and sources. Environ. Sci. Technol. 2001, 35, 4604–4621. [Google Scholar] [CrossRef]
- Karaca, F.; Anil, I.; Alagha, O. Long-range potential source contributions of episodic aerosol events to PM profile of a megacity. Atmos. Environ. 2009, 43, 5713–5722. [Google Scholar] [CrossRef]
- Xu, X.; Akhtar, U.S. Identification of potential regional sources of atmospheric total gaseous mercury in windsor, Ontario, Canada using hybrid receptor modeling. Atmos. Chem. Phys. 2010, 10, 7073–7083. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Z.; Qiao, T.; Zhang, Y.; Xiu, G.; Yu, J. Chemical characterization, the transport pathways and potential sources of PM2.5, in Shanghai: Seasonal variations. Atmos. Res. 2015, 158, 66–78. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R.; Cao, J.J.; Shen, Z.X. The transport pathways and sources of PM10 pollution in Beijing during spring 2001, 2002 and 2003. Geophys. Res. Lett. 2004, 31, 14. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuang, G.; Wang, Z.; Sun, Y.; Wang, Y.; Yuan, H. Variation of sources and mixing mechanism of mineral dust with pollution aerosol-revealed by the two peaks of a super dust storm in Beijing. Atmos. Res. 2007, 84, 265–279. [Google Scholar] [CrossRef]
- Xia, X.; Chen, H.; Zhang, W. Analysis of the dependence of column-integrated aerosol properties on long-range transport of air masses in Beijing. Atmos. Environ. 2007, 41, 7739–7750. [Google Scholar] [CrossRef]
- Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006. Atmos. Chem. Phys. 2008, 8, 6155–6168. [Google Scholar] [CrossRef]
Season | Cluster | Number of All Trajectories per Cluster | Percentage of Pollution Trajectories in Each Cluster (%) | Percentage of Pollution Trajectories in Total Pollution Trajectories Per Season (%) | Mean Concentration and Standard Deviation of Pollution Trajectories (μg/m3) |
---|---|---|---|---|---|
Winter | 1 | 620 | 12.10 | 6.40 | 147 ± 74 |
2 | 323 | 34.40 | 9.50 | 116 ± 43 | |
3 | 490 | 89.60 | 37.70 | 182 ± 82 | |
4 | 690 | 42.20 | 25.00 | 167 ± 91 | |
5 | 393 | 31.30 | 10.60 | 176 ± 109 | |
6 | 161 | 77.60 | 10.70 | 140 ± 53 | |
Spring | 1 | 553 | 21.90 | 14.40 | 117 ± 44 |
2 | 574 | 55.40 | 37.90 | 114 ± 37 | |
3 | 588 | 14.30 | 10.00 | 106 ± 33 | |
4 | 454 | 33.50 | 18.10 | 116 ± 48 | |
5 | 325 | 44.00 | 17.00 | 112 ± 33 | |
6 | 250 | 8.40 | 2.50 | 107 ± 46 | |
Summer | 1 | 324 | 18.20 | 6.90 | 108 ± 27 |
2 | 395 | 42.80 | 19.70 | 117 ± 38 | |
3 | 717 | 40.00 | 33.40 | 114 ± 35 | |
4 | 714 | 10.90 | 9.10 | 99 ± 21 | |
5 | 499 | 19.40 | 11.30 | 107 ± 40 | |
6 | 388 | 43.30 | 19.60 | 108 ± 30 | |
Autumn | 1 | 588 | 71.40 | 42.40 | 142 ± 57 |
2 | 377 | 9.30 | 3.50 | 144 ± 73 | |
3 | 538 | 32.00 | 17.40 | 119 ± 40 | |
4 | 593 | 24.30 | 14.50 | 144 ± 73 | |
5 | 320 | 60.10 | 19.70 | 129 ± 42 | |
6 | 226 | 10.60 | 2.40 | 117 ± 37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, T.; Cai, Z.; Chen, S.; Han, S.; Yao, Q.; Fan, W. Transport Pathways and Potential Source Regions of PM2.5 on the West Coast of Bohai Bay during 2009–2018. Atmosphere 2019, 10, 345. https://doi.org/10.3390/atmos10060345
Hao T, Cai Z, Chen S, Han S, Yao Q, Fan W. Transport Pathways and Potential Source Regions of PM2.5 on the West Coast of Bohai Bay during 2009–2018. Atmosphere. 2019; 10(6):345. https://doi.org/10.3390/atmos10060345
Chicago/Turabian StyleHao, Tianyi, Ziying Cai, Shucheng Chen, Suqin Han, Qing Yao, and Wenyan Fan. 2019. "Transport Pathways and Potential Source Regions of PM2.5 on the West Coast of Bohai Bay during 2009–2018" Atmosphere 10, no. 6: 345. https://doi.org/10.3390/atmos10060345
APA StyleHao, T., Cai, Z., Chen, S., Han, S., Yao, Q., & Fan, W. (2019). Transport Pathways and Potential Source Regions of PM2.5 on the West Coast of Bohai Bay during 2009–2018. Atmosphere, 10(6), 345. https://doi.org/10.3390/atmos10060345