Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models
Abstract
:1. Introduction
2. Previous Urban Heat Island and Land Cover Research
3. Experiments
4. Results
4.1. Two-Dimensional and Three-Dimensional Land Cover Charaterization Approaches
4.2. Explanatory Power of Two-Dimensional and Three-Dimensional Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SPSS Elastic Net Regression Analysis compared with OLS Regression, Model 3 at 2 am | Standardized Coefficients (Beta) | |||||||
Ridge Penalty | Lasso Penalty | Adjusted R2 (Mean Squared Error) | Neighborhood Number | Percent Impervious | Percent Tree Canopy | Aspect Ratio | Orientation | |
Selected Elastic Net Model 3 at 2 am, two-dimensional, Step 560 | 1.0 | 0.98 | 0.688 (0.371) | 0.000 | 0.196 | −0.191 | 0.199 | 0.000 |
OLS Regression Model 3 at 2am, two-dimensional | 0.642 (0.881) | −0.201 | 1.112 | 0.473 | 0.122 | −0.137 | ||
Selected Elastic Net Model 3 at 2 am, three-dimensional, Step 560 | 1.0 | 0.98 | 0.690 (0.369) | 0.000 | 0.200 | −0.189 | 0.197 | 0.000 |
OLS Regression Model 3 at 2 am, three-dimensional | 0.676 (0.839) | −0.043 | 0.818 | −0.190 | −0.192 | 0.062 | ||
SPSS Elastic Net Regression Analysis compared with OLS Regression, Model 3 at 4 pm | Standardized Coefficients (Beta) | |||||||
Ridge Penalty | Lasso Penalty | Adjusted R2 (Mean Squared Error) | Neighborhood Number | % Impervious Surface | % Tree Canopy | Distance to Industry | Upwind % Tree Canopy | |
Selected Elastic Net Model 3 at 4 pm, two-dimensional, Step 98 | 0.20 | 0.04 | 0.217 (.823) | 0.134 | −0.270 | −0.175 | −0.244 | −0.179 |
OLS Regression Model 3, at 4 pm, two-dimensional | 0.262 (1.181) | −0.053 | −0.523 | −0.509 | −0.086 | −0.423 | ||
Selected Elastic Net Model 3 at 4pm, three-dimensional, step 466 | 0.90 | 0.86 | 0.220 (0.701) | 0.000 | 0.000 | 0.000 | −0.056 | 0.000 |
OLS Regression Model 3 at 4 pm, three-dimensional | 0.255 (1.187) | −0.072 | −0.199 | −0.097 | −0.506 | −0.083 |
References
- Stone, B.J. The City and the Coming Climate: Climate Change in the Places We Live; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Gartland, L. Heat islands: Understanding and Mitigating Heat in Urban Areas; Earthscan: Sterling, VA, USA, 2008. [Google Scholar]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Memon, A.R.; Leung, D.Y.C.; Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Disparities by race in heat-related mortality in four US cities: The role of air conditioning prevalence. J. Urban Heal. 2005, 82, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Urban Heat Island Mitigation. Retrieved. 2012. Available online: http://www.epa.gov/hiri/mitigation/index.htm (accessed on 7 January 2012).
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Hough, M. Cities and Natural Processes; Routledge: New York, NY, USA, 2004. [Google Scholar]
- Alberti, M. Advances in Urban Ecology; Spring: New York, NY, USA, 2008. [Google Scholar]
- U.S. Environmental Protection Agency. Heat Island Impacts. 2012. Available online: http://www.epa.gov/hiri/impacts/index.htm (accessed on 11 May 2012).
- Zhang, K.; Oswald, E.M.; Brown, D.G.; Brines, S.J.; Gronlund, C.J.; White-Newsome, J.L.; Rood, R.B.; O’neill, M.S. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environ. Res. 2011, 111, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Stone, B., Jr.; Rodgers, M.O. Urban Form and Thermal Efficiency: How the design of cities influences the urban heat island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Coutts, A.; Beringer, J.; Tapper, N.J. Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia. J. Appl. Meteorol. Climatol. 2007, 46, 477–493. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Computers, Environment and Urban Systems The urban heat island effect and city contiguity. CEUS 2015, 54, 181–194. [Google Scholar]
- Akbari, H.; Shea Rose, L.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urban Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies, Cool Pavements. 2012. Available online: www.epa.gov/hiri/resources/pdf/CoolPavesCompendium.pdf (accessed on 11 May 2012).
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Golden, J.S.; Kaloush, K.E. Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int. J. Pavement Eng. 2006, 7, 37–52. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; University Press: Cambridge, UK, 1987. [Google Scholar]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Geiger, P.; Aron, R.H.; Todhunter, P. The Climate near the Ground; Rowman & Littlefield Publishers Inc.: Lanham, MD, USA, 2009. [Google Scholar]
- Konarska, J.; Lindberg, F.; Larsson, A.; Thorsson, S.; Holmer, B. Transmissivity of solar radiation through crowns of single urban trees-application for outdoor thermal comfort modelling. Theor. Appl. Climatol. 2014, 117, 363–376. [Google Scholar] [CrossRef]
- Matsuoka, M.; Hayasaka, T.; Fukushima, Y.; Honda, Y. Land cover in East Asia classified using terra MODIS and DMSP OLS products. Int. J. Remote Sens. 2007, 28, 221–248. [Google Scholar] [CrossRef]
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Metropolitan Chicago, Illinois; Lawrence Berkeley National Laboratory Report LBNL-49275: Berkeley, CA, USA, 2001; pp. 1–64. [Google Scholar]
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Salt Lake City, Utah; Lawrence Berkeley National Laboratory Report LBNL- 47851: Berkeley, CA, USA, 2001; pp. 1–51. [Google Scholar]
- Rose, L.S.; Akbari, H.; Taha, H. Characterizing the Fabric of the Urban Environment: A Case Study of Greater Houston, Texas; U.S. Environmental Protection Agency under the Urban Heat Island Pilot Project, University of California: Berkeley, CA, USA, 2003; pp. 1–64.
- Geneletti, D.; Gorte, B.G.H. International Journal of Remote Sensing A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. Int. J. Remote Sens. 2003, 24, 1273–1286. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y. Landscape and Urban Planning Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Kim, G.; Coseo, P. Urban Park Systems to Support Sustainability: The Role of Urban Park Systems in Hot Arid Urban Climates. Forests 2018, 9, 439. [Google Scholar] [CrossRef]
- Solecki, W.D.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the heat island effect in urban New Jersey. Environ. Hazards 2005, 6, 39–49. [Google Scholar] [CrossRef]
- Nichol, J.; Wong, M.S. Modeling urban environmental quality in a tropical city. Landsc. Urban Plan. 2005, 73, 49–58. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Therm. Remote Sens. Urban Areas 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S.; Theuray, N.; Lindley, S.J. Characterising the urban environment of UK cities and towns: A template for landscape planning. Landsc. Urban Plan. 2008, 87, 210–222. [Google Scholar] [CrossRef]
- Gray, K.A.; Finster, M.E. The Urban Heat Island, Photochemical Smog, and Chicago: Local Features of the Problem and Solution. Available online: https://www.coolrooftoolkit.org/wp-content/uploads/2015/01/Chicago-UHI-EPA.pdf (accessed on 1 July 2012).
- Li, G.; Weng, Q. Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. Int. J. Remote Sens. 2007, 28, 249–267. [Google Scholar] [CrossRef]
- Liang, B.; Weng, Q. Assessing Urban Environmental Quality Change of Indianapolis, United States, by the Remote Sensing and GIS Integration. IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens. 2011, 4, 43–55. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Nowak, D.J.; Rowntree, R.A.; Gregory, E.; David, J.; Rowan, A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; Gen. Tech. Rep. NE-186; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; 201p.
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Rowntree, R.A.; McPherson, E.G.; Sisinni, S.M.; Kerkmann, E.R.; Stevens, J.C. Measuring and analyzing urban tree cover. Landsc. Urban Plan. 1996, 36, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- US Census Bureau. Chicago 2010 US Census Population Information. Available online: http://2010.census.gov/2010census/ (accessed on 7 January 2012).
- USGS. Earth Explorer Web Tool. Available online: http://earthexplorer.usgs.gov/ (accessed on 7 January 2012).
- USGS. Elevations and Distances in the United States. Available online: https://pubs.usgs.gov/gip/70039193/report.pdf (accessed on 1 July 2012).
- Hayhoe, K.; Sheridan, S.; Kalkstein, L.; Greene, S. Climate change, heat waves, and mortality projections for Chicago. J. Great Lakes Res. 2010, 36, 65–73. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Hayhoe, K.; Parzen, J. Introduction: Assessing the effects of climate change on Chicago and the Great Lakes. J. Great Lakes Res. 2010, 36, 1–6. [Google Scholar] [CrossRef]
- Hayhoe, K.; Vandorn, J.; Croley, T.; Schlegal, N.; Wuebbles, D. Regional climate change projections for Chicago and the US Great Lakes. JGLR 2010, 36, 7–21. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. Cooling the Heat Island in Compact Urban Environments: The Effectiveness of Chicago’s Green Alley Program. Procedia Eng. 2015, 118, 691–710. [Google Scholar] [CrossRef]
- Sharma, A.; Conry, P.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Chen, F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 064004. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Attarian, J. Infrastructure for Great Cities: Illinois Sustainable Cities Symposium, standingupforillinois.org. 2008. Available online: http://www.standingupforillinois.org/pdf/green/AttarianSCS.pdf (accessed on 21 January 2008).
- Chicago of City. Elevated Surface Temperature Maps; Chicago of City: Chicago, IL, USA, 2006. [Google Scholar]
- Onset. HOBO Data Loggers. Available online: http://www.onsetcomp.com/ (accessed on 7 January 2012).
- Oke, T.R. Initial guidance to obtain representative meteorological observations at urban sites. World Meteorol. Organ. 2004, 81, 51. [Google Scholar]
- MetroWest. Weather data. 2010. Available online: http://mesowest.utah.edu/index.html (accessed on 12 December 2012).
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Unger, J.; Savic, S.; Gal, T. Modelling of the Annual Mean Urban Heat Island Pattern for Planning of Representative Urban Climate Station Network. Adv. Meteorol. 2011, 2011. [Google Scholar] [CrossRef]
- Wicki, A.; Parlow, E.; Feigenwinter, C. Evaluation and Modeling of Urban Heat Island Intensity in Basel, Switzerland. Climate 2018, 6, 55. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Hu, J.; Dong, L. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE 2014, 9, e102124. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M.O. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Townshend, J.R.G. A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover. Int. J. Remote. Sens. 2003, 24, 75–90. [Google Scholar] [CrossRef]
- O’Neil-dunne, J.; Macfaden, S.; Royar, A. A Versatile, Production-Oriented Approach to High-Resolution Tree-Canopy Mapping in Urban and Suburban Landscapes Using GEOBIA and Data Fusion. Remote. Sens. 2014, 6, 12837–12865. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landsc. Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
Common Name | Genus Species | % Reflectance | % Absorption | % Transmission |
---|---|---|---|---|
Green Ash | Fraxinus Pennsylvanica | 31 | 51 | 18 |
Cottonwood | Populus Deltoides | 24 | 50 | 26 |
Silver Maple | Acer Saccharinum | 23 | 48 | 29 |
Tulip Tree | Liriodendron Tulipifera | 24 | 52 | 24 |
White Oak | Quercus Alba | 22 | 44 | 34 |
Authors | City or Region | Type of Image | Pixel Resolution (m) | Ground Survey | Two-Dimensional | Three-Dimensional |
---|---|---|---|---|---|---|
Akbari et al., 2003 [18] | Sacramento, CA | Orthoimagery | 0.3 | X | ||
Akbari and Rose, 2001 [29] | Chicago, IL | Orthoimagery | 0.3 | X | ||
Akbari and Rose, 2001[30] | Salt Lake City, UT | Orthoimagery | 0.3 | X | ||
Chang et al., 2007 [34] | Taipei City, Taiwan | Ground survey and aerials | NS* | X | X | |
Chen et al., 2006 [38] | Pearl River Delta, China | IKONOS 2000 | 4 | X | ||
Geneletti and Gorte, 2003 [32] | Trento, Italy | Landsat TM and Orthoimagery | (Landsat), 7.5 m (Ortho) | X | X | X |
Gill et al., 2008 [39] | Manchester, England | “Cities Revealed” Aerial | 0.25 | X | ||
Gray and Finster, 2000 [40] | Chicago, IL | Orthoimagery | 0.3 | X | ||
Imhoff et al., 2010 [3] | 38 Bioregions | Landsat 7 ETM+ and IKONOS | 30 (Landsat), 4(IKONOS) | X | ||
Li and Weng, 2007 [41] | Indianapolis, IN | Landsat 7 ETM+ | NS* | |||
Liang and Weng, 2011 [42] | Indianapolis, IN | Landsat 7 TM and ETM+ | NS* | |||
Matsuoka et al., 2007 [28] | Yellow River, China | MODIS and OLS | 250 (MODIS), 2,700 (OLS) | |||
McPherson et al., 1994 [43] | Chicago, IL | Satellite and Aerials | NS* | X | X | |
Nichol and Wong, 2005 [37] | Hong Kong | IKONOS | 4 | X | ||
Nowak and Greenfield, 2012 [44] | 20 U.S. Cities | Aerials | 0.15 - 2 | X | ||
Nowak et al., 1996 [45] | 58 U.S. Cities | Aerials | NS* | X | ||
Rose et al., 2003 [31] | Houston, TX | Orthoimagery | 0.3 | X | ||
Solecki et al., 2005 [36] | Newark and | Aerials | NS* | X | ||
Yuan and Bauer, 2007 [46] | Minneapolis, MN | Landsat 5 TM, Landsat 7 ETM+, and Orthoimagery | 120 (Landsat 5), 60 (Landsat 7), 1 (Ortho) | X |
Land Cover Type | Average % for 20 Cities* in 2009 | Average % for Chicago in 2009 | Change in % Between 2005 and 2009 for 20 Cities | Change in % Between 2005 and 2009 for Chicago |
---|---|---|---|---|
Grass/Herbaceous Cover | 24.7% | 20.7% | 0.5 | −0.1 |
Tree/Shrub Cover | 28.2% | 18.0% | −1.5 | −0.5 |
Impervious Buildings | 15.9% | 26.8% | 0.3 | −0.3 |
Impervious Roads | 12.3% | 12.1% | 0.3 | 0.0 |
Impervious Other | 14.8% | 19.6% | 0.8 | 0.3 |
Water | 0.1% | 0.2% | 0.1 | 0.2 |
Bare Soil | 4.0% | 2.6% | −0.3 | 0.4 |
Total | 100% | 100% | ||
* 20 cities included in the study: Albuquerque, NM Atlanta, GA Baltimore, MD Boston, MA | Chicago, IL Denver, CO Detroit, MI Houston, TX Kansas City, MO Los Angeles, CA | Miami, FL Minneapolis, MN Nashville, TN New Orleans, LA New York, NY | Pittsburgh, PA Portland, OR Spokane, WA Syracuse, NY Tacoma, WA |
Impervious Cover-type (Percent of Total Cover) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Impervious Surface Area * | Roof | Road | Parking Area | Sidewalk/Driveway | Private Paved Surfaces (2-D Not Calculated) | Miscellaneous | |||||||||||||
2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 3-D | 2-D | 3-D | (%Δ) | |
Garfield Park | 50.3 | 52.9 | (+2.6) | 19.2 | 19.2 | (+0.0) | 13.8 | 15.0 | (+1.2) | 3.7 | 3.7 | (+0.0) | 7.1 | 7.1 | (+0.0) | 3.1 | 6.5 | 4.8 | (-1.7) |
Lincoln Park | 61.9 | 69.4 | (+7.5) | 33.8 | 33.8 | (+0.0) | 17.4 | 18.5 | (+1.1) | 3.6 | 4.3 | (+0.7) | 4.6 | 4.6 | (+0.0) | 0.0 | 2.5 | 8.2 | (+5.7) |
Pilsen | 69.3 | 71.3 | (+2) | 34.4 | 34.4 | (+0.0) | 22.1 | 22.3 | (+0.2) | 3.7 | 4.0 | (+0.3) | 7.7 | 7.7 | (+0.0) | 0.3 | 1.4 | 2.6 | (+1.2) |
Rodgers Park | 50 | 52.5 | (+2.5) | 28.2 | 28.2 | (+0.0) | 11.7 | 12.4 | (+0.7) | 5.2 | 5.4 | (+0.2) | 3.6 | 4.7 | (+1.1) | 0.8 | 1.3 | 0.5 | (-0.8) |
Wrigleyville | 65 | 75.6 | (+10.6) | 32.4 | 32.4 | (+0.0) | 20.3 | 23.3 | (+3.0) | 4.2 | 4.2 | (+0.0) | 4.8 | 4.8 | (+0.0) | 0.6 | 3.3 | 10.6 | (+7.3) |
Total Pervious Surface Area ** | Tree Cover | Grass | Barren Land | ||||||||||||||||
2-D | 3-D | (%Δ) | 2-D | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | ||||||||||
Garfield Park | 49.7 | 47.2 | (-2.5) | 5.9 | 35.3 | 38.7 | (+3.4) | 8.5 | 8.5 | (+0.0) | |||||||||
Lincoln Park | 38 | 30.6 | (-7.4) | 8.5 | 29.5 | 30.6 | (+1.1) | 0.0 | 0.0 | (+0.0) | |||||||||
Pilsen | 30.6 | 28.6 | (-2) | 3.7 | 25.2 | 26.9 | (+1.7) | 1.7 | 1.7 | (+0.0) | |||||||||
Rodgers Park | 49.9 | 47.9 | (-2) | 9.8 | 37.8 | 45.1 | (+7.3) | 2.3 | 2.8 | (+0.5) | |||||||||
Wrigleyville | 34.8 | 23.9 | (-10.9) | 13.0 | 21.2 | 23.3 | (+2.1) | 0.6 | 0.6 | (+0.0) |
Neighborhood | Density | Block Area | Impervious Surface Area | Pervious Surface Area | Tree Canopy Area | |||
---|---|---|---|---|---|---|---|---|
units/hectare | m2 | m2 | (% impervious) | m2 | (% pervious) | m2 | (% canopy) | |
Wicker Park | 47.4 | 13,462 | 12,879 | (95.7%) | 579 | (4.3%) | 637 | (4.7%) |
Bronzeville | 35.7 | 40,162 | 32,086 | (79.9%) | 8,073 | (20.1%) | 7,425 | (18.5%) |
Austin | 35.3 | 19,794 | 14,873 | (75.1%) | 4,929 | (24.9%) | 3,906 | (19.7%) |
Little Italy | 30.9 | 20,604 | 19,436 | (94.3%) | 1,174 | (5.7%) | 6,062 | (29.4%) |
Logan Square | 27 | 25,821 | 22,739 | (88.1%) | 3,073 | (11.9%) | 3,415 | (13.2%) |
Belmont Cragin | 26 | 23,219 | 18,104 | (78.0%) | 5,108 | (22.0%) | 4,212 | (18.1%) |
East Side | 19.2 | 19,468 | 14,325 | (73.6%) | 5,140 | (26.4%) | 4,501 | (23.1%) |
Beverly | 14.3 | 22,678 | 12,391 | (54.6%) | 10,296 | (45.4%) | 13,702 | (60.4%) |
Average | 32 | 23,151 | 18,354 | (79.3%) | 4,796 | (20.7%) | 5,482 | (23.7%) |
Cover-type (percent of total cover for two-dimensional and percent increase using three-dimensional) | |||||||||||||||||||
Neighborhood | % Impervious Surface Area | % Roof | % Road | % Alley | % Sidewalks, Driveways, and Parking Lots | Tree Canopy | Pervious Surface Area | ||||||||||||
2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 2-D | 3-D | (%Δ) | |
Little Italy | 66.5 | 94.3 | (+27.8) | 38.3 | 39.1 | (+0.8) | 3.2 | 17.3 | (+14.1) | 4.1 | 4.2 | (+0.1) | 20.9 | 33.7 | (+12.8) | 29.4 | 4.1 | 5.7 | (+1.6) |
Beverly | 28.9 | 54.6 | (+25.7) | 16.3 | 22.9 | (+6.6) | 4.5 | 11.6 | (+7.1) | 1.6 | 4.7 | (+3.1) | 6.5 | 15.6 | (+9.1) | 60.4 | 10.7 | 45.4 | (+34.7) |
East Side | 59.8 | 73.6 | (+13.8) | 31 | 31.9 | (+0.9) | 7.5 | 14.5 | (+7) | 3.7 | 3.8 | (+0.1) | 17.6 | 23.5 | (+5.9) | 23.1 | 17.1 | 26.4 | (+9.3) |
Belmont Cragin | 66.2 | 78 | (+11.8) | 36.9 | 37.9 | (+1) | 6.7 | 13.3 | (+6.6) | 4 | 4.1 | (+0.1) | 18.6 | 22.7 | (+4.1) | 18.1 | 15.7 | 22.1 | (+6.4) |
Bronzeville | 69.5 | 79.9 | (+10.4) | 21.6 | 21.8 | (+0.2) | 12.6 | 16.9 | (+4.3) | 4.2 | 4.5 | (+0.3) | 31.2 | 36.8 | (+5.6) | 18.5 | 12 | 20.1 | (+8.1) |
Austin | 65.5 | 75.1 | (+9.6) | 27.1 | 28.2 | (+1.1) | 10.9 | 14.4 | (+3.5) | 4.1 | 4.2 | (+0.1) | 23.4 | 28.4 | (+5) | 19.7 | 14.8 | 24.9 | (+10.1) |
Logan Square | 78.8 | 88.1 | (+9.3) | 37.3 | 37.9 | (+0.6) | 11.9 | 16.8 | (+4.9) | 7 | 7.01 | (+0.01) | 22.6 | 26.4 | (+3.8) | 13.2 | 8 | 12 | (+4) |
Wicker Park | 91.4 | 95.7 | (+4.3) | 34 | 34.02 | (+0.02) | 23.8 | 24.9 | (+1.1) | 6.2 | 6.3 | (+0.1) | 27.4 | 30.4 | (+3) | 4.7 | 3.9 | 4.4 | (+0.5) |
Average | 65.8 | 79.9 | (+14.1) ** | 30.3 | 31.7 | (+1.4) | 10.1 | 16.2 | (+6.1) | 4.4 | 4.9 | (+0.5) | 21 | 27.2 | (+6.2) | 23.4 | 10.8 | 20.1 | (+9.3) |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.12*** | 0.05 | −0.23 | −0.09** | 0.03 | −0.17 | −0.11*** | 0.04 | −0.20 |
% two-dimensional Impervious | 10.41*** | 1.90 | 1.19 | 9.75* | 4.70 | 1.11 | |||
% Tree Canopy | 4.13* | 2.05 | 0.44 | 4.47 | 4.01 | 0.47 | |||
Aspect Ratio | 1.01 | 1.75 | 0.12 | ||||||
Orientation | −0.40 | 0.31 | −0.14 | ||||||
(Constant) | 1.58* | 0.31 | −6.41*** | 1.73 | −6.17 | 3.51 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | 0.04 | 0.64*** | 0.64 | ||||||
Change in R2 | 0.60 | 0.01 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.12* | 0.05 | −0.23 | −0.05 | 0.03 | −0.09 | −0.02 | 0.04 | −0.04 |
% three-dimensional Impervious | 7.42*** | 1.12 | 0.63 | 9.66*** | 2.58 | 0.82 | |||
% Tree Canopy | −2.07* | 0.88 | −0.22 | −1.80 | 1.04 | −0.19 | |||
Aspect Ratio | −1.58 | 1.74 | −0.19 | ||||||
Orientation | 0.18 | 0.35 | 0.06 | ||||||
(Constant) | 1.58*** | 0.31 | −4.23*** | 1.11 | −5.67*** | 1.84 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | 0.04 | 0.68*** | 0.68 | ||||||
Change in R2 | 0.64 | 0.00 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.05 | 0.05 | −0.10 | −0.03 | 0.05 | −0.06 | −0.03 | 0.05 | −0.05 |
% two-dimensional Impervious | −5.84* | 2.64 | −0.71 | −4.27 | 2.92 | −0.52 | |||
% Tree Canopy | −9.85*** | 2.84 | −1.12 | −4.49 | 5.21 | −0.51 | |||
Distance to Industry | −0.37* | 0.16 | −0.42 | ||||||
Upwind % Tree Canopy | −0.01 | 0.04 | −0.09 | ||||||
(Constant) | 1.86*** | 0.29 | 7.93* | 2.40 | 6.62* | 2.56 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | −0.00 | 0.21*** | 0.26* | ||||||
Change in R2 | 0.23 | 0.07 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.05 | 0.05 | −0.10 | −0.04 | 0.05 | −0.08 | −0.036 | 0.049 | −0.072 |
% three-dimensional Impervious | −1.38 | 1.68 | −0.13 | −2.10 | 1.97 | −0.20 | |||
% Tree Canopy | −4.65*** | 1.32 | −0.53 | -0.86 | 3.75 | −0.10 | |||
Distance to Industry | −0.45* | 0.18 | −0.51 | ||||||
Upwind % Tree Canopy | −0.01 | 0.05 | −0.08 | ||||||
(Constant) | 1.86*** | 0.29 | 4.00* | 1.66 | 4.92** | 1.83 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | −0.00 | 0.17*** | 0.26*** | ||||||
Change in R2 | 0.19 | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coseo, P.; Larsen, L. Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere 2019, 10, 347. https://doi.org/10.3390/atmos10060347
Coseo P, Larsen L. Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere. 2019; 10(6):347. https://doi.org/10.3390/atmos10060347
Chicago/Turabian StyleCoseo, Paul, and Larissa Larsen. 2019. "Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models" Atmosphere 10, no. 6: 347. https://doi.org/10.3390/atmos10060347
APA StyleCoseo, P., & Larsen, L. (2019). Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere, 10(6), 347. https://doi.org/10.3390/atmos10060347