Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City
Abstract
:1. Introduction
2. Study Area
3. The ARPS Model and the tTEB Scheme
4. Methodology
4.1. Coupling the ARPS with the tTEB Scheme
4.2. Model Configuration and Experimental Design
4.3. Performance Indicators
4.4. Bayesian Estimation Supersedes the t Test
4.5. Synoptic Analysis for the Event of 12 January 2015
4.6. Datasets
5. Analysis of the Results
5.1. Rainfall on 12 January 2015
5.2. ARPS-tTEB Verifications
5.3. Impact of the Couple System ARPS-tTEB
5.3.1. Temperature and Energy Fluxes
5.3.2. Flow Properties and Convergence
5.3.3. Rain Water and Hail Mixing Ratios
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARPS | Advance regional prediction system |
CMORPH | Climate Prediction Center Morphing Technique |
CEMADEN | Centro Nacional de Monitoramento e Alertas de Desastres Naturais |
GFS | Global Forecast System |
GPM | Global Precipitation Measurement |
NWP | Numerical Weather Prediction |
tTEB | tropical Town Energy Budget scheme |
SBC | sea-breeze circulation |
MASP | Metropolitan area of São Paulo |
SEB | Surface Energy Balance |
SPWR | São Paulo weather radar |
SST | Sea Surface Temperature |
TRMM | Tropical Rainfall Measurement Mission |
References
- Markowsky, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Browning, K. Airflow and precipitation trajectories within severe storms that move to the right of the winds. J. Atmos. Sci. 1964, 21, 634–639. [Google Scholar] [CrossRef]
- Klemp, J. Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech. 1987, 59, 369–402. [Google Scholar] [CrossRef]
- Weisman, M.; Klemp, J. The structure and clasification of numerically simulated convective storms in directionally varying wind shears. Mon. Weather Rev. 1984, 112, 167–170. [Google Scholar] [CrossRef]
- Xue, M.; Droegmeier, K.; Wong, V. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model Dynamics and Verification. Meteorol. Atmos. Phys. 2000, 1, 1–45. [Google Scholar] [CrossRef]
- Shepherd, J.M. A Review of Current Invetigations or Urban-Induced Rainfall and Recommendations for the future. Earth Interact. 2005, 9, 1–12. [Google Scholar] [CrossRef]
- Buhaug, H.; Urdal, H. An urbanization bomb? Population growth and social disorder in cities. Glob. Environ. Chang. 2013, 23, 1–10. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate. Design the Spaces between Buildings, 1st ed.; Earthscan: Washington, DC, USA, 2011. [Google Scholar]
- Oke, T. Boundary Layer Climates, 1st ed.; Taylor and Francis Group: New York, NY, USA, 1987; p. 435. [Google Scholar]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three cases studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Huff, H. Urban hydrological review. Bull. Am. Meteorol. 1986, 67, 703–712. [Google Scholar] [CrossRef]
- Changnon, S., Jr.; Huff, F.; Schickendanz, P.; Vogel, J. Summary of METROMEX, Vol. 1: Weather anomalies and impacts. Bull. Am. Meteorol. Soc. 1977, 62, 260. [Google Scholar]
- Huff, F.; Vogel, J. Urban, topographic and diurnal effects on rainfall in the St. Louis region. J. Appl. Meteorol. 1978, 17, 565–577. [Google Scholar] [CrossRef]
- Sanderson, M.; Gorski, R. The effect of metropolitan Detroit-Windsor on precipitation. J. Appl. Meteorol. 1977, 17, 423–427. [Google Scholar] [CrossRef]
- Pereira Filho, A.; Barros, M.; Hallak, R.; Gandu, A. Enchentes na região metropilitana de São Paulo: Aspectos de mesoescala e avaliação de impactos. In Proceedings of the XIII Congresso Brasileiro de Meterologia, Fortaleza, Brazil, 28 August–9 Setember 2004. [Google Scholar]
- Vemado, F.; Pereira Filho, A. Severe weather caused by Heat Island and Sea breeze effects in the Metropolitan Area of São Paulo, Brazil. Adv. Meteorol. 2016, 2016, 8364134. [Google Scholar] [CrossRef]
- Karam, H.; Oliveira, A.; Soares, J. Application of mass conservation method to investigate the wind patterns over an area of complex topography. J. Braz. Soc. Mech. Sci. Eng. 2003, 25, 115–121. [Google Scholar] [CrossRef]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Cotton, W.; Pielke, R., Sr.; Walko, R.; Liston, G.; Tremback, C.; Jiang, H.; Mcanelly, R.; Harrington, J.; Nicholls, M.; Carrio, G.; et al. RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys. 2003, 82, 5–39. [Google Scholar] [CrossRef]
- Rozoff, C.; Cotton, W.; Adegoke, J. Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteorol. 2003, 42, 716–738. [Google Scholar] [CrossRef]
- Lei, M.; Niyogi, D.; Kishtawal, C.; Pielke, R.A., Sr.; Beltrán-Przekurat, A.; Nobis, T.E.; Vaidya, S.S. Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmos. Chem. Phys. 2008, 8, 5975–5995. [Google Scholar] [CrossRef] [Green Version]
- Karam, H.; Pereira Filho, A.; Masson, V.; Noilhan, J.; Marques Filho, E. Formulation of a tropical town energy budget (t-TEB) scheme. Theor. Appl. Climatol. 2010, 101, 109–120. [Google Scholar] [CrossRef]
- Rojas, J.F.; Pereira Filho, A.; Karam, H.; Vemando, F.; Masson, V. Effects of Explicit Urban-Canopy Representation on Local Circulations Above a Tropical Mega-City. Bound.-Layer Meteorol. 2018, 166, 83–111. [Google Scholar] [CrossRef]
- Freitas, E.; Rozoff, C.; Cotton, W.; Silva Dias, P. Interacions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound.-Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Oliveira de Souza, D.; dos Santos Alvalá, R.; Guedes do Nascimento, M. Urbanization effects on the microclimate of Manaus: A modeling study. Atmos. Res. 2016, 167, 237–248. [Google Scholar] [CrossRef]
- Pereira Filho, A.; Vemado, F.; Saito, K.; Seko, H.; Karam, H. ARPS Simulations of Convection during TOMACS. J. Meteorol. Soc. Jpn. 2018, 96A, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, R.; Kusaka, H. Proposing the Simplification of the Multilayer Urban Canopy Model:Intercomparison Study of Four Models. J. Appl. Meteorol. Climatol. 2009, 49, 902–919. [Google Scholar] [CrossRef]
- Porson, A.; Clark, P.; Harman, I.; Best, M.; Belchera, S. Implementation of a new urban energy budget schemeinto MetUM. Part II: Validation against observations and model intercomparison. Q. J. R. Meteorol. Soc. 2010, 136, 1530–1542. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.; Baik, J.J.; Belcher, S.; Beringer, J.; Bohnenstengel, S.; Calmet, I.; Chen, F.; Coutts, A.; et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 2011, 31, 244–272. [Google Scholar] [CrossRef]
- IBGE. Demographics Censuses; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- United Nations. Population Facts—Our urbanizing world. Dep. Econ. Soc. Aff. Popul. Div. 2014, 1, 1–4. [Google Scholar]
- Narcizo de Lima, G.; Mañaga Rueda, V. The urban growth of the metropolitan area of Sao Paulo and its impact on the climate. Weather Clim. Extrem. 2018, 21, 17–26. [Google Scholar] [CrossRef]
- Muller, G.; Ambrizzi, T.; Nuñez, M. Mean atmospheric circulation leading to generalized frosts in Central Southern South America. Theor. Appl. Climatol. 2005, 82, 95–112. [Google Scholar] [CrossRef]
- Hidalgo Nunes, L.; Koga Vicente, A.; Henrique Candido, D. Tempo e Clima no Brasil—Clima da Região Sudeste do Brasil, 2nd ed.; Climatologia Regional: São Paulo, Brazil, 2015; pp. 243–256. [Google Scholar]
- Businger, J.; Wyngaard, J.; Izumi, Y.; Bradley, E. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Byun, D. On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteorol. 1990, 29, 652–657. [Google Scholar] [CrossRef]
- Deardorff, J. Parameterization of the planetary boundary layer for use in general circulation models. Mon. Weather Rev. 1972, 100, 93–106. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M. An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Arnfield, A.; Mills, G. An analysis of the circulation characteristics and energy budget of a dry, asymmetric, eastwest urban canyon II. Energy budget. Int. J. Climatol. 1994, 14, 239–261. [Google Scholar] [CrossRef]
- Grimmond, C.; Oke, T. An evapotranspiration interception model for urban areas. Water Resour. Res. 1991, 27, 1739–1755. [Google Scholar] [CrossRef]
- Schultz, P. An explicit cloud physics paramterization for operational numerical weather prediction. Mon. Weather Rev. 1995, 123, 3331–3343. [Google Scholar] [CrossRef]
- Kain, J.; Fritsch, J. Convective parameterization for mesoscale models: The Kain Fritsch scheme. The Representation of Cumulus Convection in Numerical Mode. Meteorol. Monogr. 1993, 24, 165–170. [Google Scholar]
- Grimmond, C.; Oke, T. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Rotach, M. Mean flow and turbulence characteristics in an urban roughness sublayer. Bound.-Layer Meteorol. 2003, 111, 55–84. [Google Scholar] [CrossRef]
- Flores Rojas, J.; Pereira Filho, A.; Karam, H. Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data. Urban Clim. 2016, 17, 32–66. [Google Scholar] [CrossRef]
- Tarifa, J.; Azevedo, T. Os Climas na Cidade de São Paulo: Teoria e Prática, 1st ed.; FFLCH/USP: São Paulo, Brazil, 2001. [Google Scholar]
- Noilhan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Baldwin, M.; Kain, J. Sensitivity of several performance measures to displacement error, bias and event frequency. Weather Forecast. 2005, 21, 636–648. [Google Scholar] [CrossRef]
- Mesinger, F.; Brill, K. Bias normalized precipitation score. In Proceedings of the 17th Conferences on Probability and Statistics, Seattle, WA, USA, 11–15 January 2004; Volume 77. [Google Scholar]
- Murphy, A. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather Forecast. 1993, 8, 281–293. [Google Scholar] [CrossRef]
- Tartaglione, N. Relationship between precipitation forecast errors and skill scores of dichotomous forecasts. Am. Meteorol. Soc. 2009, 25, 355–365. [Google Scholar] [CrossRef]
- Kruschke, J. Bayesian Estimation Supersedes the t Test. J. Exp. Psychol. 2013, 142, 573–603. [Google Scholar] [CrossRef] [PubMed]
- Centro de Gerenciamento de Emergencias. Alagamentos; Centro de Gerenciamento de Emergencias: São Paulo, Brazil, 2015. [Google Scholar]
- CEMADEN. Centro Nacional de Monitoramento e Alertas de Desastres Naturais; CEMADEN: São Paulo, Brazil, 2015. [Google Scholar]
- Ferreira, M.; Oliveira, A.; Soares, J.; Codato, G.; Bárbaro, E.; Escobedo, J. Radiation balance at the surface in the city of São Paulo, Brazil: Diurnal and seasonal variations. Theor. Appl. Climatol. 2011, 107, 229–246. [Google Scholar] [CrossRef]
- De Morais, M.; de Freitas, E.; Marciotto, E.; Guerrero, V.; Martins, L.; Martins, J. Implementation of Observed Sky-View Factor in a Mesoscale Model for Sensitivity Studies of the Urban Meteorology. Sustainability 2018, 10, 2183. [Google Scholar] [CrossRef]
- Shem, W.; Shepherd, M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res. 2009, 92, 179–189. [Google Scholar] [CrossRef]
- Holt, T.; Niyogi, D.; Chen, F.; LeMone, M.A.; Manning, K.; Qureshi, A.L. Effect of Land- Atmosphere Interactions on the IHOP 24–25 May 2002 Convection Case. Mon. Weather Rev. 2006, 134, 113–133. [Google Scholar] [CrossRef]
- Cotton, W. Storm and Cloud Dynamics, 1st ed.; International Geophysical Series; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Knupp, K.R.; Cotton, W.R. An intense, quasi-steady thunderstorm over mountainous terrain—Part III: Doppler radar observations of the turbulence structure. J. Atmos. Sci. 1982, 39, 359–368. [Google Scholar] [CrossRef]
- Holton, J. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Changnon, S. Temporal and spatial relations between hail and lightning. Am. Meteorol. Soc. 1992, 31, 587–604. [Google Scholar] [CrossRef]
- Pinto, I.R.; Pinto, O., Jr.; Gomes, M.A.; Ferreira, N.J. Urban effect on the characteristics of cloud-to-ground lightning over Belo Horizonte. Ann. Geophys. 2004, 22, 697–700. [Google Scholar] [CrossRef]
- Pereira Filho, A. A mobile X-POL weather radar for hydrometeorological applications in the metropolitan area of São Paulo, Brazil. Geosci. Instrum. Methods Data Syst. 2012, 1, 169–183. [Google Scholar] [CrossRef]
- Naccarato, K.P.; Pinto, O., Jr.; Pinto, I.R. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Pereira Filho, A.; Vemado, F.; Perez, J.; Da Silva, I., Jr.; Tanaka, J. Measurements of Drop Size Distribution in a Megacity. In Proceedings of the 36th Radar Conference, Breckenridge, CO, USA, 16–20 September 2013;A3; Volume 2A3, pp. 1–5. [Google Scholar]
- Pereira Filho, A.; Dias, M.; Albrecht, R.; Pereira, L.; Gandú, A.; Tokay, A. Multisensor analysis of a squall line in the Amazon Region. J. Geophys. Res. 2002, 107, 8084–8095. [Google Scholar] [CrossRef]
- Almeida, G.; Brito, J.; Morales, C.; Andrade, M.; Artaxo, P. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: The importance of aerosol size-resolved chemical composition on CCN concentration prediction. Atmos. Chem. Phys. 2014, 14, 7559–7572. [Google Scholar] [CrossRef]
- Van den Heever, S.; Cotton, W. Urban Aerosol Impacts on Downwind Convective Storms. J. Appl. Meteorol. Climatol. 2006, 46, 828–850. [Google Scholar] [CrossRef]
Category | Options |
---|---|
Governing equations | 3D, nonhydrostatic, compresible |
Grid stagger | vertical hyperbolic tangent |
Time differencing | Leapfrog and forward time differences |
Turbulence closure | 1.5 TKE turbulent mixing |
Upper boundary | GFS model (resolution: 1) |
Lateral boundaries | GFS model (resolution: 1) |
Mycrophysics | Ref. [41] ice microphysics scheme |
Cumulus parameterization | Ref. [42] scheme for domain of 27 km |
Radiation physics | Atmospheric radiation transfer parameterization |
Surface physics | tTEB scheme for urban canopy and two layer |
force-restore model for vegetation canopy |
Parameter Class | Albedo | Emissivity | Leaf Area Index | Roughness Length z (m) | Zero-Plane Displacement d (m) |
---|---|---|---|---|---|
Grassland—shrub cover | 0.18 | 0.96 | 5.0 | 0.51 | 3.6 |
Grassland—tree cover | 0.20 | 0.95 | 6.0 | 0.06 | 0.7 |
Semi-desert (urban) | 0.15 | 0.90 | 4.8 | 0.80 | 1.1 |
Parameter | Urban 1 | Urban 2 | Average |
---|---|---|---|
Building height (m) | 50.0 | 5.0 | 10.0 |
Building aspect ratio (height/length) | 2.0 | 1.0 | 1.2 |
Canyon aspect ratio (height/width) | 3.0 | 0.5 | 0.9 |
Fractional area covered by artificial material | 0.9 | 0.8 | 0.8 |
Fractional area covered by buildings | 0.9 | 0.8 | 0.8 |
Traffic sensible heat release (W m) | 30.0 | 20.0 | 21 |
Traffic latent heat release (W m) | 7.0 | 5.0 | 5.3 |
Industrial sensible heat release (W m) | 20.0 | 30.0 | 28.5 |
Industrial latent heat release (W m) | 40.0 | 50.0 | 48.5 |
Parameter | Value |
---|---|
Roof layers 1, 2 and 3 thicknesses (m) | 0.1, 0.1, 0.1 |
Wall layers 1, 2 and 3 thicknesses (m) | 0.1, 0.1, 0.1 |
Road layers 1, 2 and 3 thicknesses (m) | 0.1, 0.1, 0.1 |
Roof layers 1, 2 and 3 thermal conductivity W m K | 0.81, 0.81, 0.81 |
Wall layers 1, 2 and 3 thermal conductivity W m K | 0.81, 0.81, 0.81 |
Road layers 1, 2 and 3 thermal conductivity W m K | 0.81, 0.81, 0.81 |
Roof layers 1, 2 and 3 heat capacity J m K | 10, 10, 10 |
Wall layers 1, 2 and 3 heat capacity J m K | 10, 10, 10 |
Road layers 1, 2 and 3 heat capacity J m K | 10, 10, 10 |
Roof, wall and road albedos | 0.10, 0.20, 0.10 |
Roof, wall and road emissivities | 0.90, 0.85, 0.94 |
Constant temperature inside building (K) | 297.15 |
Observation (r) | ||||
---|---|---|---|---|
Yes | No | Total | ||
Forecast (f) | Yes | Hit (a) | False alarm (b) | a + b |
No | Miss (c) | Correct negative (d) | c + d | |
Total | a + c | b + d | N = a + b + c + d |
Score | Definition | Range |
---|---|---|
Probability of detection | POD = | 0 ≤ POD ≤ 1 |
Threat score | TS = | 0 ≤ TS ≤ 1 |
Equitable threat score | ETS = | −1/3 ≤ ETS ≤ 1 |
True skill statistic | TSS = − | −1 ≤ TSS ≤ 1 |
Bias-adjusted threat score | TSA = | −1 ≤ TSA ≤ 1 |
Odds ratio skill score | ODDS = | −1 ≤ ODDS ≤ 1 |
Scores | Slope | y-Inter | MAE | PBIAS | RMSE |
---|---|---|---|---|---|
tTEB | 1.07 | −3.3 × 10 | −5.20 | 12.78 | 20.68 |
Control | 1.14 | −4.9 × 10 | −9.46 | 23.26 | 27.24 |
GPM | CMORPH | RADAR | ||||
---|---|---|---|---|---|---|
tTEB | Control | tTEB | Control | tTEB | Control | |
ETS | 0.35 | 0.32 | 0.32 | 0.28 | 0.30 | 0.28 |
TSS | 0.50 | 0.47 | 0.46 | 0.44 | 0.44 | 0.42 |
POD | 0.58 | 0.53 | 0.50 | 0.47 | 0.48 | 0.45 |
TS | 0.40 | 0.36 | 0.38 | 0.34 | 0.35 | 0.32 |
TSA | 0.42 | 0.37 | 0.36 | 0.33 | 0.37 | 0.35 |
ODDS | 0.89 | 0.84 | 0.90 | 0.87 | 0.85 | 0.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Rojas, J.L.; Pereira-Filho, A.J.; Karam, H.A.; Vemado, F.; Masson, V.; Silva-Vidal, F.Y. Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City. Atmosphere 2019, 10, 356. https://doi.org/10.3390/atmos10070356
Flores-Rojas JL, Pereira-Filho AJ, Karam HA, Vemado F, Masson V, Silva-Vidal FY. Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City. Atmosphere. 2019; 10(7):356. https://doi.org/10.3390/atmos10070356
Chicago/Turabian StyleFlores-Rojas, José Luis, Augusto José Pereira-Filho, Hugo Abi Karam, Felipe Vemado, Valéry Masson, and Fey Yamina Silva-Vidal. 2019. "Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City" Atmosphere 10, no. 7: 356. https://doi.org/10.3390/atmos10070356
APA StyleFlores-Rojas, J. L., Pereira-Filho, A. J., Karam, H. A., Vemado, F., Masson, V., & Silva-Vidal, F. Y. (2019). Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City. Atmosphere, 10(7), 356. https://doi.org/10.3390/atmos10070356