Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Climatology of Water Vapor Transport, Cold Advection and Precipitation over Eastern China during Winter
4. Synoptic Features of Intensive Snowfall Events in North China and the Yangtze River Valley Region
4.1. Synoptic Evolution of Water Vapor Transport
4.2. Synoptic Evolution of Cold Advection
5. Conclusions and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, B.Z.; Gu, L.H.; Ding, Y.H.; Shao, L.; Wu, Z.M.; Yang, X.S.; Li, C.Z.; Li, Z.C.; Wang, X.M.; Cao, Y.H.; et al. The great 2008 Chinese ice storm: Its socioeconomic-ecological impact and sustainability lessons learned. Bull. Am. Meteorol. Soc. 2011, 92, 47–60. [Google Scholar] [CrossRef]
- Enzi, S.; Bertolin, C.; Diodato, N. Snowfall time-series reconstruction in Italy over the last 300 years. Holocene 2014, 24, 346–356. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J.; Zhou, B.T. Climatic condition and synoptic regimes of two intense snowfall events in Eastern China and implications for climate variability. J. Geophys. Res. Atmos. 2019, 124, 926–941. [Google Scholar] [CrossRef]
- Diodato, N.; Buntgen, U.; Bellocchi, G. Mediterranean winter snowfall variability over the past millennium. Int. J. Clim. 2019, 39, 384–394. [Google Scholar] [CrossRef]
- Martínez-Ibarra, E.; Serrano-Montes, J.L.; Arias-García, J. Reconstruction and analysis of 1900–2017 snowfall events on the southeast coast of Spain. Clim. Res. 2019, 78, 41–50. [Google Scholar] [CrossRef]
- Wang, H.J.; He, S. The increase of snowfall in Northeast China after the mid-1980s. Chin. Sci. Bull. 2013, 58, 1350–1354. [Google Scholar] [CrossRef]
- Wang, H.-J.; Sun, J.-Q.; Chen, H.-P.; Zhu, Y.-L.; Zhang, Y.; Jiang, D.-B.; Lang, X.-M.; Fan, K.; Yu, E.-T.; Yang, S. Extreme Climate in China: Facts, Simulation and Projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Sun, J.Q.; Wang, H.J.; Yuan, W.; Chen, H.P. Spatial-temporal features of intense snowfall events in China and their possible change. J. Geophys. Res. 2010, 115, 115. [Google Scholar] [CrossRef]
- Ma, J.H.; Wang, H.J.; Zhang, Y. Will boreal winter precipitation over China increase in the future? An AGCM simulation under summer “ice-free Arctic” conditions. Chin. Sci. Bull. 2012, 57, 759–764. [Google Scholar] [CrossRef]
- Jin, C.X.; Zhou, T.J.; Guo, Z.; Wu, B.; Chen, X.L. Improved simulations of the east Asian winter monsoon interannual variation by IAP/LASG AGCMs. Atmos. Ocean. Sic. Lett. 2016, 9, 204–210. [Google Scholar] [CrossRef]
- Wu, B.; Wang, J. Winter Arctic Oscillation, Siberian High and East Asian winter monsoon. Geophys. Res. Lett. 2002, 29, 1897. [Google Scholar] [CrossRef]
- Jhun, J.G.; Lee, E.J. A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Clim. 2004, 17, 711–726. [Google Scholar] [CrossRef]
- Li, Q.; Ding, Y.; Dong, W.; Yan, G. A numerical study on the winter monsoon and cold surge over East Asia. Adv. Atmos. Sci. 2007, 24, 664–678. [Google Scholar] [CrossRef]
- Wu, B.Y.; Su, J.Z.; Zhang, R.H. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chin. Sci. Bull. 2011, 56, 2335–2343. [Google Scholar] [CrossRef]
- Wu, B.Y. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes. Chin. J. Atmos. Sci. 2018, 42, 786–805. [Google Scholar]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Gong, D.Y.; Wang, S.W.; Zhu, J.H. East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett. 2001, 28, 2073–2076. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Chen, Y.; Zhao, S.; Zeng, H.; Zhang, Y.; Liu, Q. Characters of meteorological disasters caused by the extreme synoptic process in early 2008 over China. Adv. Clim. Chang. Res. 2008, 4, 63–67. [Google Scholar]
- Xie, Y.; Wei, F.; Chen, G.; Zhang, T.; Hu, L. Analysis of the 2008 heavy snowfall over south China using GPS PWV measurements from the Tibetan Plateau. Ann. Geophys. 2010, 28, 1369–1376. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Song, Y.; Zhang, J. The unprecedented freezing disaster in January 2008 in southern China and its possible association with the global warming. Acta. Meteor. Sin. 2008, 22, 538–558. [Google Scholar] [CrossRef]
- Sun, J.Q.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J. Water vapor transport paths and accumulation during widespread snowfall events in northeastern China. J. Clim. 2013, 26, 4550–4566. [Google Scholar] [CrossRef]
- Wang, H.J.; Yu, T.E.; Yang, S. An exceptionally heavy snowfall in northeast China: Large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteor. Atmos. Phys. 2011, 113, 11–25. [Google Scholar] [CrossRef]
- Sun, J.Q.; Wang, H.J.; Yuan, W. A preliminary investigation on causes of the catastrophic snowstorm in March, 2007 in northeastern part of China. Acta. Meteor. Sin. 2009, 67, 469–477. [Google Scholar]
- Wang, Z.Y.; Zhou, B.T. Large-scale atmospheric circulations and water vapor transport influencing interannual variations of intense snowfalls in northern China. Chin. J. Geophys. 2018, 61, 2654–2666. [Google Scholar]
- Zhang, R.; Jiang, D.B.; Zhang, Z.S. Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv. Atmos. Sci. 2015, 32, 1016–1026. [Google Scholar] [CrossRef]
- Lin, W.; Meng, J.; Sui, C.H.; Meng, W.; Li, J. A study of the microphysical processes in a numerically simulated heavy snowfall event in North China: The sensitivity of different snow intercept parameters. Meteor. Atmos. Phys. 2009, 104, 1–11. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H. Warming over the North Pacific can intensify snow events in Northeast China. Atmos. Ocean. Sci. Lett. 2016, 9, 122–128. [Google Scholar] [CrossRef]
- Voudouri, A.; Kotta, D. Factors determined snow accumulation over the greater Athens Area during latest snowfall events. Adv. Meteor. Clim. Atmos. Phys. 2013, 355–361. [Google Scholar] [CrossRef]
- Gao, H. China’s snow disaster in 2008, who is the principal player? Int. J. Clim. 2009, 29, 2191–2196. [Google Scholar]
- Ding, Y. Build-Up, Air Mass Transformation and Propagation of Siberian High and Its Relations to Cold Surge in East Asia. Meteorol. Atmos. Phys. 1990, 44, 281–292. [Google Scholar]
- Huang, W.Y.; Wang, B.; Wright, J.S.; Chen, R. On the non-stationary relationship between the Siberian High and Arctic Oscillation. PLoS ONE 2016, 11, e0158122. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Qiu, T.P.; Yang, Z.F.; Lin, D.Y.; Wright, J.S.; Wang, B.; He, X.S. On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 12692–12714. [Google Scholar] [CrossRef]
- Huang, W.Y.; Yang, Z.F.; He, X.S.; Lin, D.Y.; WANG, B.; Wright, J.S.; Chen, R.Y.; Ma, W.H.; Li, F.F. A possible mechanism for the occurrence of wintertime extreme precipitation events over South China. Clim. Dyn. 2019, 52, 2367–2384. [Google Scholar] [CrossRef]
- Yang, Z.F.; Huang, W.Y.; He, X.S.; Wang, Y.; Qiu, T.P.; Wright, J.S.; Wang, B. Synoptic conditions and moisture sources for extreme snowfall events over East China. J. Geophys. Res. Atmos. 2019, 124, 601–623. [Google Scholar] [CrossRef]
- Simmonds, I.; Bi, D.; Hope, P. Atmospheric water vapor flux and its association with rainfall over China in summer. J. Clim. 1999, 12, 1353–1367. [Google Scholar] [CrossRef]
- Sun, B.; Zhu, Y.; Wang, H.J. The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci. 2011, 28, 1039–1048. [Google Scholar] [CrossRef]
- Qin, Z.K.; Sun, Z.B. Influence of abnormal East Asian winter monsoon on the northwestern Pacific Sea temperature. Chin. J. Atmos. Sci. 2006, 30, 257–267. [Google Scholar]
- Chen, J.; Sun, S.Q. Eastern Asian winter monsoon anomaly and variation of global circulation. Chin. J. Atmos. Sci. 1999, 23. [Google Scholar] [CrossRef]
- Jeong, J.H.; Ou, T.; Linderholm, H.W. Recent recovery of the Siberian High intensity. J. Geophys. Res. 2011, 116, D23102. [Google Scholar] [CrossRef]
- Ding, Y.H. The propagation of the winter monsoon during cold air outbreaks in east Asia and the associated planetary-scale effect. J. Appl. Meteor. Sci. 1991, 2, 124–132. [Google Scholar]
- Lin, W.; Bueh, C. The cloud processes of a simulated moderate snowfall event in North China. Adv. Atmos. Sci. 2006, 23, 235–242. [Google Scholar] [CrossRef]
- Murata, A.; Sasaki, H.; Nosaka, M.; Takayabu, I.; Kawase, H.; Mizuta, R.; Ishii, M. Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations. Clim. Chang. 2016, 139, 265–278. [Google Scholar]
- Liu, J.; Curry, J.A.; Wang, H.J.; Song, M.R.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, F.; Gao, X.J. Regional earth system modeling: Review and future directions. Atmos. Ocean. Sci. Lett. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Lv, M.X.; Ma, Z.G.; Peng, S. Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin. Atmos. Ocean. Sci. Lett. 2019, 12, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Sun, J.M.; Lei, H.C. Numerical investigations for the impacts of triple-moment and double-moment condensation schemes on the warm rain formation. Atmos. Ocean. Sci. Lett. 2018, 11, 30–38. [Google Scholar] [CrossRef]
NC | YRV | ||||
---|---|---|---|---|---|
Total Precipitation Amount (mm) | Date | UTC | Total Precipitation Amount (mm) | Date | UTC |
340.4 | 1976.2.14 | 1200–2400 | 615.9 | 1984.1.17 | 1200–2400 |
323.5 | 1979.2.21 | 1200–2400 | 597.6 | 2010.2.10 | 1200–2400 |
240.9 | 1990.1.27 | 1200–2400 | 438 | 1972.2.4 | 1200–2400 |
232.2 | 2001.1.6 | 0000–1200 | 411.4 | 1991.12.26 | 0000–1200 |
175.9 | 1973.1.22 | 1200–2400 | 381 | 1969.1.10 | 1200–2400 |
154.9 | 2010.2.28 | 0000–1200 | 358.8 | 1966.2.21 | 1200–2400 |
151.6 | 1964.2.14 | 1200–2400 | 356.4 | 1965.12.15 | 1200–2400 |
150.1 | 1972.1.30 | 0000–1200 | 342.4 | 1969.1.27 | 1200–2400 |
147.2 | 1986.12.26 | 1200–2400 | 300.8 | 1974.2.23 | 1200–2400 |
147.1 | 1972.1.23 | 0000–1200 | 287.9 | 1964.2.16 | 0000–1200 |
145.7 | 1979.1.28 | 0000–1200 | 279.9 | 1989.2.22 | 0000–1200 |
139.8 | 1970.2.23 | 1200–2400 | 279.9 | 1964.2.7 | 1200–2400 |
136.7 | 2012.12.28 | 1200–2400 | 277.2 | 1990.1.29 | 1200–2400 |
134.7 | 1985.12.6 | 1200–2400 | 277 | 1997.1.22 | 1200–2400 |
125.1 | 1969.2.13 | 0000–1200 | 274.5 | 1969.2.2 | 1200–2400 |
122.9 | 2001.2.22 | 1200–2400 | 257.3 | 2008.1.27 | 0000–1200 |
122.7 | 1966.2.20 | 1200–2400 | 238.7 | 1966.12.24 | 1200–2400 |
120.4 | 1994.2.10 | 1200–2400 | 235.8 | 2011.1.19 | 1200–2400 |
119.4 | 1971.12.23 | 1200–2400 | 231.4 | 1994.2.23 | 1200–2400 |
115.8 | 1964.1.10 | 0000–1200 | 226.9 | 2008.2.1 | 0000–1200 |
115 | 2012.12.20 | 1200–2400 | 223.3 | 1979.1.30 | 0000–1200 |
114.2 | 1963.12.9 | 0000–1200 | 223.2 | 1996.2.16 | 1200–2400 |
113.5 | 1981.1.22 | 1200–2400 | 219 | 1972.2.2 | 1200–2400 |
109.3 | 1978.2.7 | 1200–2400 | 212.6 | 1993.1.13 | 1200–2400 |
108.9 | 1974.2.4 | 0000–1200 | 201.2 | 1994.1.17 | 1200–2400 |
108.8 | 1962.2.9 | 0000–1200 | 184.7 | 1989.1.12 | 1200–2400 |
105.5 | 2006.2.6 | 0000–1200 | 183.7 | 2003.2.10 | 1200–2400 |
105.1 | 2010.1.3 | 0000–1200 | 178.7 | 1983.12.28 | 1200–2400 |
103.5 | 1996.2.16 | 0000–1200 | 173.2 | 1985.12.9 | 0000–1200 |
103.2 | 1989.1.5 | 1200–2400 | 170.1 | 1979.1.11 | 0000–1200 |
102.9 | 1964.2.5 | 1200–2400 | 169.2 | 2008.1.14 | 1200–2400 |
99 | 1993.1.8 | 0000–1200 | 166 | 1977.1.28 | 1200–2400 |
98.9 | 2009.2.18 | 1200–2400 | 158.2 | 1964.2.22 | 1200–2400 |
98 | 1981.2.19 | 0000–1200 | 156.3 | 1985.2.16 | 1200–2400 |
97 | 1984.12.15 | 0000–1200 | 156.1 | 2008.1.18 | 1200–2400 |
96.7 | 1971.1.17 | 1200–2400 | 155.9 | 2000.1.24 | 0000–1200 |
95.9 | 1990.1.29 | 1200–2400 | 149.8 | 1967.2.9 | 1200–2400 |
95.9 | 2000.1.21 | 1200–2400 | 126.9 | 1988.2.16 | 0000–1200 |
94.2 | 1975.2.3 | 0000–1200 | 126.8 | 1970.1.4 | 0000–1200 |
93.5 | 1973.2.2 | 0000–1200 | 126.5 | 1983.1.11 | 0000–1200 |
92 | 1971.12.21 | 1200–2400 | |||
90.3 | 1969.1.27 | 1200–2400 | |||
89.7 | 2012.12.13 | 0000–1200 | |||
88.9 | 1976.2.17 | 0000–1200 | |||
87.7 | 2006.2.27 | 0000–1200 | |||
86.4 | 1987.2.18 | 1200–2400 | |||
84.3 | 1983.1.31 | 1200–2400 | |||
84.2 | 2002.12.22 | 0000–1200 | |||
83.7 | 1972.2.15 | 0000–1200 | |||
82.4 | 1991.12.22 | 0000–1200 | |||
81.7 | 2005.2.14 | 1200–2400 | |||
81.4 | 1967.1.26 | 1200–2400 | |||
80.4 | 1969.2.15 | 0000–1200 | |||
80.4 | 1986.2.16 | 1200–2400 | |||
80.3 | 2011.2.25 | 1200–2400 | |||
79.4 | 2002.12.6 | 1200–2400 | |||
79.3 | 1997.1.4 | 0000–1200 | |||
78.8 | 1979.12.18 | 0000–1200 | |||
76.8 | 2008.2.24 | 1200–2400 | |||
76.4 | 1982.2.3 | 0000–1200 | |||
76.1 | 2010.2.10 | 0000–1200 | |||
74.8 | 2001.2.5 | 0000–1200 | |||
72.9 | 2013.2.3 | 0000–1200 | |||
72.9 | 2001.1.23 | 1200–2400 | |||
70.4 | 1989.12.18 | 1200–2400 | |||
69.5 | 2000.1.5 | 0000–1200 | |||
67.6 | 1962.2.24 | 0000–1200 | |||
63.5 | 1994.12.18 | 1200–2400 | |||
62.7 | 1981.12.17 | 1200–2400 | |||
62.2 | 2014.2.4 | 1200–2400 |
NC | YRV | |||||
---|---|---|---|---|---|---|
∆WVT | ∆WVT | |||||
Water Vapor Pre-Conditoning Stage | 73% | −57% | 16% | 16% | 10% | 26% |
IS Stage | −10% | 94% | 84% | −38% | 112% | 74% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Sun, B. Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley. Atmosphere 2019, 10, 368. https://doi.org/10.3390/atmos10070368
Xie Z, Sun B. Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley. Atmosphere. 2019; 10(7):368. https://doi.org/10.3390/atmos10070368
Chicago/Turabian StyleXie, Zhixing, and Bo Sun. 2019. "Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley" Atmosphere 10, no. 7: 368. https://doi.org/10.3390/atmos10070368
APA StyleXie, Z., & Sun, B. (2019). Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley. Atmosphere, 10(7), 368. https://doi.org/10.3390/atmos10070368