Statistical Downscaling of Urban-scale Air Temperatures Using an Analog Model Output Statistics Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Numerical Weather Prediction Models
2.3. Urban Surface Parameters
2.4. AWS data
2.5. MOS-Analog Technique
2.6. Support Vector Machine
2.7. Computation System
3. Results and Discussion
3.1. Extraction and Computation of Analog Days
3.2. Accuracy Evaluation of Maximum Temperature during a Heatwave Episode
3.3. Accuracy Evaluation of Minimum Temperature during a Tropical Night
3.4. Accuracy Evaluation Associated with Precipitation Episodes and Seasonal Fluctuations
3.5. Prediction Accuracy of Daily Maximum and Minimum Temperatures in Summer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Themeßl, M.J.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Lemonsu, A.; Viguie, V.; Daniel, M.; Masson, V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 2015, 14, 586–605. [Google Scholar] [CrossRef]
- Metzger, K.B.; Ito, K.; Matte, T.D. Summer heat and mortality in New York City: How hot is too hot? Environ. Health Perspect. 2009, 118, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Herdt, A.J. A multi-index investigation of the spatiotemporal relationships between heat and EMS calls during the 2015 pan American games in Toronto, Canada, 2017. MA Thesis, Texas Tech University, Lubbock, TX, USA, August 2017. [Google Scholar]
- Tan, J.; Yang, L.; Grimmond, C.S.B.; Shi, J.; Gu, W.; Chang, Y.; Hu, P.; Sun, J.; Ao, X.; Han, Z. Urban integrated meteorological observations: Practice and experience in Shanghai, China. Bull. Am. Meteorol. Soc. 2015, 96, 85–102. [Google Scholar] [CrossRef]
- Yi, C.; Kwon, H.G.; Kim, K.R.; An, S.M.; Choi, Y.J.; Scherer, D. Climate information application for improved planning and management of cities. In Proceedings of the ICUC Annual Meeting, Toulouse, France, 20–24 July 2015. [Google Scholar]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Herrera, S.; Fita, L.; Fernández, J.; Gutiérrez, J.M. Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Seguí, P.Q.; Ribes, A.; Martin, E.; Habets, F.; Boé, J. Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of mediterranean basins. J. Hydrol. 2010, 383, 111–124. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ekström, M. Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol. 2009, 29, 385–416. [Google Scholar] [CrossRef]
- Yi, C.; An, S.M.; Kim, K.; Kwon, H.; Min, J.-S. Surface micro-climate analysis based on urban morphological characteristics: Temperature deviation estimation and evaluation. Atmos. Korea 2016, 26, 445–459. [Google Scholar] [CrossRef]
- Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr. 1999, 23, 329–357. [Google Scholar] [CrossRef]
- Caillouet, L.; Vidal, J.-P.; Sauquet, E.; Graff, B. Probabilistic precipitation and temperature downscaling of the twentieth century reanalysis over France. Clim. Past 2016, 12, 635–662. [Google Scholar] [CrossRef]
- Oh, J.-H.; Kim, T.; Kim, M.-K.; Lee, S.-H.; Min, S.-K.; Kwon, W.-T. Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 1629–1643. [Google Scholar] [CrossRef]
- Kim, K.B.; Kwon, H.-H.; Han, D. Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations. J. Hydrol. 2015, 530, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Dallavalle, J.P. A perspective on the use of model output statistics in objective weather forecasting. In Proceedings of the 15th Conference on Weather Analysis and Forecasting, Norfolk, VA, USA, 19–23 August 1996; Volume 15, pp. 479–482. [Google Scholar]
- Fuentes, U.; Heimann, D. An improved statistical-dynamical downscaling scheme and its application to the alpine precipitation climatology. Theor. Appl. Climatol. 2000, 65, 119–135. [Google Scholar] [CrossRef]
- Imbert, A.; Benestad, R.E. An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol. 2005, 82, 245–255. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Keramitsoglou, I.; Kiranoudis, C.T.; Weng, Q. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1253–1257. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Yi, C.; Shin, Y.; Roh, J.W. Development of an urban high-resolution air temperature forecast system for local weather information services based on statistical downscaling. Atmosphere 2018, 9, 164. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M.C.; Herrera, S.; Gutiérrez, J.M. Bias correction and downscaling of future RCM precipitation projections using a MOS-analog technique. J. Geophys. Res. 2017, 122, 2631–2648. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Numerical Data Application Manual; KMA: Seoul, Korea, 2011; pp. 13–17.
- Kim, K.R.; Yi, C.; Lee, J.-S.; Meier, F.; Jänicke, B.; Fehrenbach, U.; Scherer, D. BioCAS: Biometeorological climate impact assessment system for building-scale impact assessment of heat-stress related mortality. DIE ERDE J. Geogr. Soc. Berl. 2014, 145, 62–79. [Google Scholar]
- Yi, C.Y.; Choi, Y.-J.; Eum, J.-H.; Kim, G.H.; Rang, K.; Kim, D.S.; Fehrenbach, U. Development of Climate Analysis Software for Urban and Environmental Planning of Seoul; Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2010; p. 455. [Google Scholar]
- Yi, C.; Kim, K.R.; An, S.M.; Choi, Y.-J.; Holtmann, A.; Jänicke, B.; Fehrenbach, U.; Scherer, D. Estimating spatial patterns of air temperature at building-resolving spatial resolution in Seoul, Korea. Int. J. Climatol. 2016, 36, 533–549. [Google Scholar] [CrossRef]
- Yi, C.-Y.; Kim, K.-R.; An, S.-M.; Choi, Y.-J. Impact of the local surface characteristics and the distance from the center of heat island to suburban areas on the night temperature distribution over the Seoul metropolitan area. J. Korean Assoc. Geogr. Inf. Stud. 2014, 17, 35–49. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical methods in the atmospheric sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- Déqué, M. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob. Planet. Chang. 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Widmann, M.; Bretherton, C.S.; Salathé, E.P., Jr. Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. J. Clim. 2003, 16, 799–816. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Zorita, E.; Hughes, J.P.; Lettemaier, D.P.; von Storch, H. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. J. Clim. 1995, 8, 1023–1042. [Google Scholar] [CrossRef]
- Matulla, C.; Zhang, X.; Wang, X.L.; Wang, J.; Zorita, E.; Wagner, S.; Von Storch, H. Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Clim. Dyn. 2008, 30, 133–144. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; San-Martín, D.; Brands, S.; Manzanas, R.; Herrera, S. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 2013, 26, 171–188. [Google Scholar] [CrossRef]
- Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Daoud, A.B.; Bontron, G. Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol. Earth Syst. Sci. 2013, 17, 4189–4208. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Quintana-Seguí, P.; Llasat, M.C.; Herrera, S.; Gutiérrez, J.M. Testing MOS precipitation downscaling for ensembles regional climate models over Spain. J. Geophys. Res. Atmos. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Maniscalco, M.A.; Teo, C.H. Package Kernlab-CRAN. Available online: https://cran.r-project.org/web/packages/kernlab/index.html (accessed on 25 July 2019).
- Christen, A.; Vogt, R. Energy and radiation balance of a central european city. Int. J. Climatol. 2004, 24, 1395–1421. [Google Scholar] [CrossRef]
- Yi, C.-Y.; An, S.-M.; Kim, K.-R.; Choi, Y.-J.; Scherer, D. Improvement of air temperature analysis by precise spatial data on a local-scale-a case study of Eunpyeong new town in Seoul. J. Korean Assoc. Geogr. Inf. Stud. 2012, 15, 144–158. [Google Scholar] [CrossRef]
Label | Description | Units |
---|---|---|
TMP | Air temperature 1.5 m above the ground | |
NCPCP | Total precipitation | |
RH | Relative humidity 1.5 m above the ground | |
TCAR | Total cloud cover (random overlap) | |
UGRD | 10-m U wind component | |
VGRD | 10-m V wind component |
Label | Description | Units |
---|---|---|
Aspect | Aspect angle | |
CSAR | Complete surface aspect ratios derived from BH | |
dzdx | Topographic gradient in the x-direction | |
dzdy | Topographic gradient in the y-direction | |
Building height | Building height derived from airborne LiDAR | |
Vegetation height | Vegetation height derived from airborne LiDAR | |
Hollow depth | Hollow depth by building and terrain | |
Slope | Slope angle | |
BS area | Fractional coverage of building surfaces | |
US area | Fractional coverage of impervious surfaces | |
TV area | Fractional coverage of tall vegetated surfaces | |
VS area | Fractional coverage of vegetated surfaces | |
WS | Fractional coverage of water surfaces | |
Z | Sea level | |
Areal type | Forms of land cover | - |
BHBS | Building volume | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.; Yi, C. Statistical Downscaling of Urban-scale Air Temperatures Using an Analog Model Output Statistics Technique. Atmosphere 2019, 10, 427. https://doi.org/10.3390/atmos10080427
Shin Y, Yi C. Statistical Downscaling of Urban-scale Air Temperatures Using an Analog Model Output Statistics Technique. Atmosphere. 2019; 10(8):427. https://doi.org/10.3390/atmos10080427
Chicago/Turabian StyleShin, Yire, and Chaeyeon Yi. 2019. "Statistical Downscaling of Urban-scale Air Temperatures Using an Analog Model Output Statistics Technique" Atmosphere 10, no. 8: 427. https://doi.org/10.3390/atmos10080427
APA StyleShin, Y., & Yi, C. (2019). Statistical Downscaling of Urban-scale Air Temperatures Using an Analog Model Output Statistics Technique. Atmosphere, 10(8), 427. https://doi.org/10.3390/atmos10080427