The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW
Abstract
:1. Introduction
2. Model and Data
3. Results and Discussion
3.1. Description of the Rainfall Events and Their Conditions of Development
3.1.1. Evolution of Cloud Systems
3.1.2. Large Scale Situation
3.1.3. Radar Records of the Convective Rainfall Events
3.3. Simulation of Temperature and Wind Speed
3.4. Rainfall Characteristics: Simulations and Data
3.5. Simulation of Averaged Vertical Velocity
3.6. Simulation of Hydrometeors in the Mantaro Valley and its Surroundings
4. Conclusions
- During the development of the two convective rainfall events used as case studies, the Mantaro valley was under the influence of low and medium level flow from the north and northeast. At the same time, a high-level wind from the Pacific Ocean was flowing over the mountain range of the central Andes, interacting with the humid flow from the east Amazon and causing instability, which was higher in the case of CRE1.
- Ground-based observations show that the most rainfall occurred in the afternoon (after 19:00 UTC) and mainly after 20:00 UTC for CRE2 and after 23:00 UTC for CRE1. The ka band cloud radar captured the CREs from its early stage, in its central part in the case of CRE1, but only in its periphery in the case of CRE2. However, both events left their trace in the radar record, showing significant Ze and vertical velocity profiles, consistent with deep convective clouds lasting until nearly 02:00 UTC (21 LST) for CRE1 and 23:00 UTC (17 LST) for CRE2. In both cases, the convective systems coexist in at least part of their time over the radar with stratified rainfall from the outskirts of the storm, forming an almost continuous bright band.
- In the case of CRE1, wherein the core of the system passed over the radar, the temperature record was well reproduced by most of the configurations, particularly by Morrison and Milbrandt. For CRE2, for which the periphery of the system passed over the radar, all the microphysical schemes produced underestimation of the surface temperature during the rainfall event, and matched after the rainfall, showing the temperature drop related with the evaporative cooling effect of the rainfall.
- For CRE1, all the schemes give good estimations of 24 h precipitation, with relatively low RMSE, but for CRE2, Goddard and Milbrandt underestimated the 24 h precipitation in the inner domain, representative of the valley and its surrounding mountains, while the rest of the schemes overestimated precipitation. Morrison and Thompson showed the lowest precipitation difference fields while Morrison and Goddard showed the least root mean square errors, particularly over the valley.
- For CRE1, the Morrison, Milbrandt, and Lin configurations reproduced the general dynamics of the development of cloud systems, but in the case of Lin, it did not reproduce the system over HYO, so that its comparison with radar and rain gauge data was not possible. Regarding CRE2, only Morrison, WSM6, and Lin reproduced it. Lin simulated the event in advance and with shorter duration, while Morrison and WSM6 reproduced it with a one hour lag, but the duration of the simulated storm was comparable with the radar record and GOES imagery.
- The vertical profiles of the hydrometeors simulated by different schemes show significant differences, showing that the best performance of the Morrison scheme for both case studies may be related to their ability to simulate the role of graupel in precipitation formation.
- The analysis of the vertical structure of the simulated cloud field shows that the Morrison parameterization reproduced the convective systems in a way consistent with the observations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Junquas, C.; Li, L.; Vera, C.S.; Le Treut, H.; Takahashi, K. Influence of South America Orography on Summertime Precipitation in Southeastern South America. Clim. Dyn. 2016, 46, 3941–3963. [Google Scholar] [CrossRef]
- Junquas, C.; Takahashi, K.; Condom, T.; Espinoza, J.C.; Chavez, S.; Sicart, J.E.; Lebel, T. Understanding the Influence of Orography on the Precipitation Diurnal Cycle and the Associated Atmospheric Processes in the Central Andes. Clim. Dyn. 2018, 50, 3995–4017. [Google Scholar] [CrossRef]
- Garreaud, R. Multiscale Analysis of the Summertime Precipitation over the Central Andes. Mon. Weather Rev. 1999, 129, 901–921. [Google Scholar] [CrossRef]
- Sulca, J.; Vuille, M.; Silva, Y.; Takahashi, K. Teleconnections between the Peruvian Central Andes and Northeast Brazil during Extreme Rainfall Events in Austral Summer. J. Hydrometeorol. 2015, 17, 499–515. [Google Scholar] [CrossRef]
- Instituto Geofísico del Perú. Atlas Climático de Precipitación y Temperatura del Aire en la Cuenca del Río Mantaro: Volumen I. 2005. Available online: https://sinia.minam.gob.pe/documentos/atlas-climaticoprecipitacion-temperatura-aire-cuenca-rio-mantaro (accessed on 15 February 2019).
- Silva, Y.; Takahashi, K.; Chávez, R. Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv. Geosci. 2008, 14, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Wang, W.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Saulo, C.; Nogués-Paegle, J. WRF Model Sensitivity to Choice of Parameterization over South America: Validation against Surface Variables. Mon. Weather Rev. 2010, 138, 3342–3355. [Google Scholar] [CrossRef]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.B.; Rao, T.N.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF Cloud Microphysics to Simulations of a Severe Thunderstorm Event over Southeast India. Ann. Geophys. 2010, 28, 603–619. [Google Scholar] [CrossRef]
- Nasrollahi, N.; AghaKouchak, A.; Li, J.; Gao, X.; Hsu, K.; Sorooshian, S. Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations. Weather Forecast. 2012, 27, 1003–1016. [Google Scholar] [CrossRef]
- Mayor, Y.G.; Mesquita, M.D.S. Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Tan, E. Microphysics Parameterization Sensitivity of the WRF Model Version 3.1.7 to Extreme Precipitation: Evaluation of the 1997 New Year’s Flood of California. Geosci. Model Dev. Discuss. 2016. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Connolly, P.J.; Gallagher, M.W. Sensitivity of WRF Cloud Microphysics to Simulations of a Convective Storm Over the Nepal Himalayas. Open Atmos. Sci. J. 2017, 11, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Jee, J.B.; Kim, S. Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere 2017, 8, 96. [Google Scholar] [CrossRef]
- Orr, A.; Listowski, C.; Couttet, M.; Collier, E.; Immerzeel, W.; Deb, P.; Bannister, D. Sensitivity of Simulated Summer Monsoonal Precipitation in Langtang Valley, Himalaya, to Cloud Microphysics Schemes in WRF. J. Geophys. Res. 2017, 122, 6298–6318. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.; Gerlitz, L.; Talchabhadel, R.; Schenk, E.; Schickhoff, U.; Scholten, T.; Böhner, J. WRF-Based Simulation of an Extreme Precipitation Event over the Central Himalayas: Atmospheric Mechanisms and Their Representation by Microphysics Parameterization Schemes. Atmos. Res. 2018, 214, 21–35. [Google Scholar] [CrossRef]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Mon. Weather Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. J. Atmos. Sci. 2005, 62, 3051–3306. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci. 2005. [Google Scholar] [CrossRef]
- Moya-Álvarez, A.S.; Martínez-Castro, D.; Flores, J.L.; Silva, Y. Sensitivity Study on the Influence of Parameterization Schemes in WRF_ARW Model on Short- and Medium-Range Precipitation Forecasts in the Central Andes of Peru. Adv. Meteorol. 2018. [Google Scholar] [CrossRef]
- Moya-Álvarez, A.S.; Martínez-Castro, D.; Kumar, S.; Estevan, R.; Silva, Y. Response of the WRF Model to Different Resolutions in the Rainfall Forecast over the Complex Peruvian Orography. Theor. Appl. Climatol. 2019. [Google Scholar] [CrossRef]
- Moya-álvarez, A.S.; Gálvez, J.; Holguín, A.; Estevan, R.; Kumar, S.; Villalobos, E.; Martínez-Castro, D.; Silva, Y. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 2018, 9, 362. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 2002, 22, 1065–1092. [Google Scholar] [CrossRef]
- Comin, A.N.; Schumacher, V.; Justino, F.; Fernández, A. Impact of Different Microphysical Parameterizations on Extreme Snowfall Events in the Southern Andes. Weather Clim. Extrem. 2018, 21, 65–75. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J.; McCumber, M. An Ice-Water Saturation Adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Simpson, J.; Baker, D.; Braun, S.; Chou, M.D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.; et al. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model. Meteorol. Atmos. Phys. 2003, 82, 97–137. [Google Scholar] [CrossRef]
- Yáñez-Morroni, G.; Gironás, J.; Caneo, M.; Delgado, R.; Garreaud, R. Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Flores-Rojas, J.L.; Moya-Alvarez, A.S.; Kumar, S.; Martínez-Castro, D.; Villalobos-Puma, E.; Silva, Y. Analysis of Possible Triggering Mechanisms of Severe Thunderstorms in the Tropical Central Andes of Peru, Mantaro Valley. Atmosphere 2019, 10, 301. [Google Scholar] [CrossRef]
- Schultz, P. An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Weather Rev. 1995, 123, 3331–3343. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Stensrud, D.J. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2011; 480p. [Google Scholar]
- Done, J.; Davis, C.A.; Weisman, M. The Next Generation of NWP: Explicit Forecasts of Convection Using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Gilliland, E.K.; Rowe, C.M. A Comparison of Cumulus Parameterization Schemes in the WRF Model. In Proceedings of the 21th Conference on Hydrology, 87th AMS Annual Meeting, San Antonio, TX, USA, 13–18 January 2007; Available online: https://ams.confex.com/ams/87ANNUAL/techprogram/paper_120591.htm (accessed on 20 February 2019).
- Zhang, D.; Anthes, R.A. A High-Resolution Model of the Planetary Boundary Layer-Sensitivity Tests and Comparison with SESAME-79 Data. J. Appl. Meteorol. 1982, 21, 1594–1609. [Google Scholar] [CrossRef]
- Paulson, C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Dyer, A.J.; Hicks, B.B. Flux-gradient Relationships in the Constant Flux Layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
- Webb, E.K. Profile Relationships: The Log-Linear Range, and Extension to Strong Stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The Parametrization of Surface Fluxes in Large-Scale Models under Free Convection. Q. J. R. Meteorol. Soc. 1995, 121, 255–270. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model (Formerly Paper Number 17.5). In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 84th AMS Annual Meeting, Seattle, WA, USA, 10–16 January 2004; Available online: https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (accessed on 20 February 2019).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.; Hartley, A.J. The Central Andean West-Slope Rainshadow and Its Potential Contribution to the Origin of Hyper-Aridity in the Atacama Desert. Int. J. Climatol. 2003, 23, 1453–1464. [Google Scholar] [CrossRef]
- Virji, H.; Virji, H. A Preliminary Study of Summertime Tropospheric Circulation Patterns over South America Estimated from Cloud Winds. Mon. Weather Rev. 1981, 109, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Silva-Vidal, Y.; Moya-Álvarez, A.S.; Martínez-Castro, D. Effect of the Surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmos. Res. 2019, 225, 193–208. [Google Scholar] [CrossRef]
- Straka, J.M. Cloud and Precipitation Microphysics: Principles and Parameterizations; Cambridge University Press: Cambridge, UK, 2009; 392p. [Google Scholar]
- Houze, R.A., Jr. Cloud Dynamics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 104, ISBN 9780080921464. [Google Scholar]
- Lasher-Trapp, S.; Kumar, S.; Moser, D.H.; Blyth, A.M.; French, J.R.; Jacksonc, R.C.; Leon, D.C.; Plummer, D.M. On Different Microphysical Pathways to Convective Rainfall. J. Appl. Meteorol. Climatol. 2018, 57, 2399–2417. [Google Scholar] [CrossRef]
- Lean, H.W.; Clark, P.A.; Dixon, M.; Roberts, N.M.; Fitch, A.; Forbes, R.; Halliwell, C. Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom. Mon. Weather Rev. 2008, 136, 3408–3424. [Google Scholar] [CrossRef]
Parameter | Domain 1 | Domain 2 | Domain 3 | Domain 4 |
---|---|---|---|---|
Central point | Lat: 10° S Lon: 75° W | Lat: 12.26° S Lon: 74.83° W | Lat: 12.37° S Lon: 75.03° W | Lat: −75.36° S Lon: −11.96° W |
Horizontal resolution | 18 km | 6 km | 3 km | 0.75 km |
Dimensions (XYZ) | 115 × 140 × 28 | 115 × 142 × 28 | 127 × 163 × 28 | 113 × 121 × 28 |
Time step | 50 s | 16.6 s | 8.3 s | 2.1 s |
Initial and boundary conditions | FNL 1.0 × 1.0° analysis | WRF output from Domain 1 | WRF output from Domain 2 | WRF output from Domain 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Castro, D.; Kumar, S.; Flores Rojas, J.L.; Moya-Álvarez, A.; Valdivia-Prado, J.M.; Villalobos-Puma, E.; Castillo-Velarde, C.D.; Silva-Vidal, Y. The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere 2019, 10, 442. https://doi.org/10.3390/atmos10080442
Martínez-Castro D, Kumar S, Flores Rojas JL, Moya-Álvarez A, Valdivia-Prado JM, Villalobos-Puma E, Castillo-Velarde CD, Silva-Vidal Y. The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere. 2019; 10(8):442. https://doi.org/10.3390/atmos10080442
Chicago/Turabian StyleMartínez-Castro, Daniel, Shailendra Kumar, José Luis Flores Rojas, Aldo Moya-Álvarez, Jairo M. Valdivia-Prado, Elver Villalobos-Puma, Carlos Del Castillo-Velarde, and Yamina Silva-Vidal. 2019. "The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW" Atmosphere 10, no. 8: 442. https://doi.org/10.3390/atmos10080442
APA StyleMartínez-Castro, D., Kumar, S., Flores Rojas, J. L., Moya-Álvarez, A., Valdivia-Prado, J. M., Villalobos-Puma, E., Castillo-Velarde, C. D., & Silva-Vidal, Y. (2019). The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere, 10(8), 442. https://doi.org/10.3390/atmos10080442