Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Concentration Data
2.2. Pixel Based Trend Analysis
3. Results and Discussion
3.1. Trend Analysis of PM Concentrations during 1999–2016
3.2. Spatial Distribution Analysis of PM Concentration Trend
3.3. Relationship with Energy Consumption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget 2017, 8, 43322–43331. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Ke, L.; Hong, L.; Wang, H.; Wu, L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 2017, 7, 257–262. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, B.; Bai, Y. A Systematic Analysis of PM2.5 in Beijing and its Sources from 2000 to 2012. Atmos. Environ. 2015, 124, 98–108. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, J.; Gao, B.; Xu, B.; Dai, S.; He, B.; Xie, X. Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region. Sci. Rep. 2017, 7, 40735. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Petäjä, T.; Järvi, L.; Kerminen, V.M.; Ding, A.J.; Sun, J.N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.; Fu, C.B. Enhanced air pollution via aerosol-boundary layer feedback in China. Sci. Rep. 2016, 6, 18998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. Int. J. Environ. Res. Public Health 2014, 11, 173–186. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W. Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Sci. Rep. 2016, 6, 23604. [Google Scholar] [CrossRef]
- King, M.; Kaufman, Y.J.; Tanre, D.; Nakajima, T. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. Bull. Am. Meteorol. Soc. 1998, 80, 2229–2260. [Google Scholar] [CrossRef]
- Yan, S.; Wu, G. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China. Sci. Rep. 2016, 6, 33227. [Google Scholar] [CrossRef]
- Jian, S.; Wang, J.; Wei, Y.; Li, Y.; Miao, L. The Haze Nightmare Following the Economic Boom in China: Dilemma and Tradeoffs. Int. J. Environ. Res. Public Health 2016, 13, 402. [Google Scholar] [CrossRef]
- Zhang, R. Atmospheric science: Warming boosts air pollution. Nat. Clim. Chang. 2017, 7, 238–239. [Google Scholar] [CrossRef]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal Pattern of PM2.5Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef]
- Wang, S.; Gao, J.; Zhang, Y.; Zhang, J.; Cha, F.; Tao, W.; Ren, C.; Wang, W. Impact of emission control on regional air quality: An observational study of air pollutants before, during and after the Beijing Olympic Games. J. Environ. Sci. 2014, 26, 175–180. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Xiaofeng, X.U.; Jing, X.U.; Wei, M.; Weiwei, P.U. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Shen, X.; Yao, Z.; Hong, H.; Kebin, H.E.; Zhang, Y.; Liu, H.; Ye, Y.U. PM2.5 emissions from light-duty gasoline vehicles in Beijing, China. Sci. Total Environ. 2014, 487, 521–527. [Google Scholar] [CrossRef]
- He, K.; Yang, F.; Ma, Y.; Zhang, Q.; Yao, X.; Chan, C.K.; Cadle, S.; Chan, T.; Mulawa, P. The characteristics of PM2.5 in Beijing, China. Atmos. Environ. 2001, 35, 4959–4970. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z.R. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef]
- Yong, Y.; George, C. Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China). Environ. Sci. Technol. 2015, 49, 13431–13438. [Google Scholar] [CrossRef]
- Wei, Y.; Zengliang, Z.; Xiaobin, P.; Lifeng, Z.; Dan, C. Estimating PM2.5 in Xi’an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models. Sci. Total Environ. 2015, 505, 1156–1165. [Google Scholar]
- Hansen, M.; Potapov, P.; Margono, B.; Stehman, S.; Turubanova, S.; Tyukavina, A. Response to comment on “High-resolution global maps of 21st-century forest cover change”. Science 2014, 342, 850–853. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Annual PM2.5 Grids from MODIS MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR 1998–2016; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [Google Scholar]
- Sherbinin, A.D.; Levy, M.A.; Zell, E.; Weber, S.; Jaiteh, M. Using satellite data to develop environmental indicators. Environ. Res. Lett. 2014, 9, 084013. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Williams, G.; Guo, Y. Health benefits from improved outdoor air quality and intervention in China. Environ. Pollut. 2016, 214, 17–25. [Google Scholar] [CrossRef]
- Lin, C.; Ying, L.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- He, Q.; Geng, F.; Li, C.; Yang, S.; Wu, Z. Long-term characteristics of satellite-based PM2.5 over East China. Sci. Total Environ. 2017, 612, 1417. [Google Scholar] [CrossRef]
- Zhou, T.; Jian, S.; Huan, Y. Temporal and Spatial Patterns of China’s Main Air Pollutants: Years 2014 and 2015. Atmosphere 2017, 8, 137. [Google Scholar] [CrossRef]
- Wu, R.; Bo, Y.; Li, J.; Li, L.; Li, Y.; Xie, S. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012. Atmos. Environ. 2016, 127, 244–254. [Google Scholar] [CrossRef]
- Zhang, S.J.; Chaudhry, A.S.; Ramdani, D.; Osman, A.; Cheng, L. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. J. Integr. Agric. 2016, 15, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. Lett. 2014, 9, 024010. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; He, S.; Gao, L. Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation. Appl. Energy 2019, 240, 851–859. [Google Scholar] [CrossRef]
- China Statistics Press. National Bureau of Statistics of China (NBSC); China Statistics Press: Beijing, China, 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, X.; Song, H.; Du, Y.; Cui, W.; Zhou, Y. Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999–2016. Atmosphere 2019, 10, 461. https://doi.org/10.3390/atmos10080461
Zhao J, Wang X, Song H, Du Y, Cui W, Zhou Y. Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999–2016. Atmosphere. 2019; 10(8):461. https://doi.org/10.3390/atmos10080461
Chicago/Turabian StyleZhao, Jianghua, Xuezhi Wang, Hongqing Song, Yi Du, Wenjuan Cui, and Yuanchun Zhou. 2019. "Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999–2016" Atmosphere 10, no. 8: 461. https://doi.org/10.3390/atmos10080461
APA StyleZhao, J., Wang, X., Song, H., Du, Y., Cui, W., & Zhou, Y. (2019). Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999–2016. Atmosphere, 10(8), 461. https://doi.org/10.3390/atmos10080461