The 21st Century Coal Question: China, India, Development, and Climate Change
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jevons, W.S. The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal Mines; Macmillan & Co: London, UK, 1865. [Google Scholar]
- Andres, R.J.; Boden, T.A.; Breon, F.M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J.S.; Jacobson, A.; Marland, G.; Miller, J.; et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 2012, 9, 1845–1871. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.; Barros, V.; Broome, J.; Cramer, W.; Christ, R.; Church, J.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- British Petroleum. Statistical Review of World Energy 2018, 67th ed.; British Petroleum: London, UK, 2018. [Google Scholar]
- Randalls, S. History of the 2 °C climate target. WIREs Clim Chang. 2010, 1, 598–605. [Google Scholar] [CrossRef]
- Wrigley, E.A. Energy and the English Industrial Revolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 10. [Google Scholar] [CrossRef] [PubMed]
- Voigtlander, N.; Voth, H.J. Why England? Demographic factors, structural change and physical capital accumulation during the Industrial Revolution. J. Econ. Growth 2006, 11, 319–361. [Google Scholar] [CrossRef] [Green Version]
- UN DESA. UN World Population Prospects: The 2017 Revision. Available online: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (accessed on 19 August 2019).
- Jones, G.A.; Warner, K.J. The 21st century population-energy-climate nexus. Energ Policy 2016, 93, 206–212. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Sevcikova, H.; Li, N.; Gu, D.A.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD G20. Available online: http://www.oecd.org/g20/ (accessed on 22 January 2018).
- Wilson, J.D. Resource powers? Minerals, energy and the rise of the BRICS. Third World Q. 2015, 36, 223–239. [Google Scholar] [CrossRef]
- Hubbert, M.K. Techniques of prediction as applied to the production of oil and gas. In oil and gas supply modelling; National Bureau of Standards: Gaithersburg, MD, USA, 1982. [Google Scholar]
- Maggio, G.; Cacciola, G. When will oil, natural gas, and coal peak? Fuel 2012, 98, 111–123. [Google Scholar] [CrossRef]
- Mohr, S.H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of world fossil fuels by country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Wang, J.L.; Feng, L.Y.; Tverberg, G.E. An analysis of China’s coal supply and its impact on China’s future economic growth. Energy Policy 2013, 57, 542–551. [Google Scholar] [CrossRef]
- Warner, K.J.; Jones, G.A. A population-induced renewable energy timeline in nine world regions. Energy Policy 2017, 101, 65–76. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D.X.; Shang, W. CO2 emissions and economic development: China’s 12th five-year plan. Energy Policy 2012, 42, 468–475. [Google Scholar] [CrossRef]
- Wei, S. Letter on China’s Autonomous Domestic Mitigation Actions. Available online: https://unfccc.int/files/meetings/cop_15/copenhagen_accord/application/pdf/chinacphaccord_app2.pdf (accessed on 19 August 2019).
- Wang, L.R. Sea Lanes and Chinese National Energy Security. J. Coast. Res. 2015, 73, 572–576. [Google Scholar] [CrossRef]
- UNFCCC. Enhanced actions on climate change: China’s intended nationally determined contributions. Available online: http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China’s%20INDC%20-%20on%2030%20June%202015.pdf (accessed on 18 August 2019).
- Chacko, P. The New Geo-Economics of a “Rising” India: State Transformation and the Recasting of Foreign Policy. J. Contemp. Asia 2015, 45, 326–344. [Google Scholar] [CrossRef]
- UNFCCC. India’s intended nationally determined contribution: Working towards climate justice. Available online: http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf (accessed on 18 August 2019).
- van Ruijven, B.J.; Weitzel, M.; den Elzen, M.G.J.; Hof, A.F.; van Vuuren, D.P.; Peterson, S.; Narita, D. Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches. Energy Policy 2012, 46, 116–134. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Fan, Y.; Li, N.; Li, F.; Hu, Y. A co-integration analysis between electricity consumption and economic development in Hebei Province. Int. J. Energy Power Eng. 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Chakravorty, U.; Pelli, M.; Ural Marchand, B. Does the quality of electricity matter? Evidence from rural India. J. Econ. Behav. Organ. 2014, 107, 228–247. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Bhattacharya, R.N. Causality between energy consumption and economic growth in India: A note on conflicting results. Energy Econ 2004, 26, 977–983. [Google Scholar] [CrossRef]
- Anhal, R. Causality between GDP, Energy and Coal Consumption in India, 1970-2011: A Non-parametric Bootstrap Approach. Int. J. Energy Econ. Policy 2013, 3, 434–446. [Google Scholar]
- Caldwell, J.C. Toward a restatement of demographic transition theory. Popul. Dev. Rev. 1976, 2, 321–366. [Google Scholar] [CrossRef]
- Hussain, A. Demographic transition in China and its implications. World Dev. 2002, 30, 1823–1834. [Google Scholar] [CrossRef]
- Bhat, P.N.M. Returning a favor: Reciprocity between female education and fertility in India. World Dev. 2002, 30, 1791–1803. [Google Scholar] [CrossRef]
- WB World Development Indicators. Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 18 August 2019).
- Lambert, J.G.; Hall, C.A.S.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and quality of life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef] [Green Version]
- von Bertalanffy, L. Untersuchungen über die Gesetzlichkeit des Wachstums. Dev. Genes Evol. 1934, 131, 613–652. [Google Scholar]
- Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol 2011, 85, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Hubbert, M.K. Drilling and production practice, 1956. In Nuclear Energy and the Fossil Fuels; American Petroleum Institute: Washington, DC, USA, 1956. [Google Scholar]
- Warner, K.; Jones, G. Energy and Population in Sub-Saharan Africa: Energy for Four Billion? Environments 2018, 5, 107. [Google Scholar] [CrossRef]
- Lin, B.-Q.; Liu, J.-H. Estimating coal production peak and trends of coal imports in China. Energy Policy 2010, 38, 512–519. [Google Scholar] [CrossRef]
- Lin, B.Q.; Wang, T. Forecasting natural gas supply in China: Production peak and import trends. Energy Policy 2012, 49, 225–233. [Google Scholar] [CrossRef]
- Wang, J.L.; Feng, L.Y.; Zhao, L.; Snowden, S. China’s natural gas: Resources, production and its impacts. Energy Policy 2013, 55, 690–698. [Google Scholar] [CrossRef]
- Darda, M.A.; Guseo, R.; Mortarino, C. Nonlinear production path and an alternative reserves estimate for South Asian natural gas. Renew. Sustain. Energy Rev. 2015, 47, 654–664. [Google Scholar] [CrossRef]
- Piovani, C.; Li, M.Q. Climate Change and the Limits to the Growth-Oriented Model of Development: The Case of China and India. Rev. Radic. Political Econ. 2013, 45, 449–455. [Google Scholar] [CrossRef]
- Walsh, S.; Tian, H.F.; Whalley, J.; Agarwal, M. China and India’s participation in global climate negotiations. Int. Environ. Agreem. -Politics Law Econ. 2011, 11, 261–273. [Google Scholar] [CrossRef]
- Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar] [CrossRef]
- Lucas, R.E. On the mechanics of economic-development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- UN World Economic Situation and Prospects 2015. Available online: http://www.un.org/en/development/desa/policy/wesp/archive.shtml#2015 (accessed on 18 August 2019).
- Hoskisson, R.E.; Eden, L.; Lau, C.M.; Wright, M. Strategy in emerging economies. Acad. Manag. J. 2000, 43, 249–267. [Google Scholar]
- Hall, C.A. Economic development or developing economies: What are our priorities? In Ecosystem Rehabilitation; Wali, M.K., Ed.; SPB Academic Publishing: London, UK, 1992; pp. 101–126. [Google Scholar]
- Shahbaz, M.; Khan, S.; Tahir, M.I. The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis. Energy Econ. 2013, 40, 8–21. [Google Scholar] [CrossRef]
- Chen, W.Y.; Li, H.L.; Wu, Z.X. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model. Energy Policy 2010, 38, 7106–7120. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Zhang, Z.X. China in the transition to a low-carbon economy. Energy Policy 2010, 38, 6638–6653. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S. Electricity consumption and economic growth in India. Energy Policy 2002, 30, 125–129. [Google Scholar] [CrossRef]
- Harris, G. Coal Rush in India Could Tip Balance on Climate Change. Available online: http://www.nytimes.com/2014/11/18/world/coal-rush-in-india-could-tip-balance-on-climate-change.html?_r=1 (accessed on 18 August 2019).
- Das, K.N.; Wilkes, T. India says Paris climate deal won’t affect plans to double coal output. Available online: https://www.reuters.com/article/us-climatechange-summit-india-coal-idUSKBN0TX15F20151214 (accessed on 18 August 2019).
- Wang, S.J.; Li, Q.Y.; Fang, C.L.; Zhou, C.S. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China. Sci. Total Environ. 2016, 542, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Massetti, E. Carbon tax scenarios for China and India: Exploring politically feasible mitigation goals. Int. Environ. Agreem. PoliticsLaw Econ. 2011, 11, 209. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Costanza, R.; Hall, C.A.S.; Kaufmann, R. Energy and the United States economy—a biophysical perspective. Science 1984, 225, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Bongaarts, J.; Greenhalgh, S. An alternative to the one-child policy in China. Popul. Dev. Rev. 1985, 11, 585–617. [Google Scholar] [CrossRef]
- Kulkarni, P.M. The Population and Development Scenario in India. In Population and Reproductive Health in India: An Assessment of the Current Situation and Future Needs; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Dreze, J.; Murthi, M. Fertility, education, and development: Evidence from India. Popul. Dev. Rev. 2001, 27, 33. [Google Scholar] [CrossRef]
- Ram, B. Fertility Decline and Family Change in India: A Demographic Perspective. J. Comp. Fam. Stud. 2012, 43, 11. [Google Scholar] [CrossRef]
- Moursund, A.; Kravdal, O. Individual and community effects of women’s education and autonomy on contraceptive use in India. Popul. Stud. 2003, 57, 285–301. [Google Scholar] [CrossRef]
- Paul, V.K.; Sachdev, H.S.; Mavalankar, D.; Ramachandran, P.; Sankar, M.J.; Bhandari, N.; Sreenivas, V.; Sundararaman, T.; Govil, D.; Osrin, D.; et al. India: Towards Universal Health Coverage 2 Reproductive health, and child health and nutrition in India: Meeting the challenge. Lancet 2011, 377, 332–349. [Google Scholar] [CrossRef]
- Caldwell, J.C. Mass education as a determinant of the timing of fertility decline. Popul. Dev. Rev. 1980, 6, 225–255. [Google Scholar] [CrossRef]
- Colleran, H.; Jasienska, G.; Nenko, I.; Galbarczyk, A.; Mace, R. Community-level education accelerates the cultural evolution of fertility decline. Proc. R. Soc. B-Biol. Sci. 2014, 281, 7. [Google Scholar] [CrossRef]
- Kravdal, O. Education and fertility in sub-Saharan Africa: Individual and community effects. Demography 2002, 39, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Behrman, J.A. Does Schooling Affect Women’s Desired Fertility? Evidence From Malawi, Uganda, and Ethiopia. Demography 2015, 52, 787–809. [Google Scholar] [CrossRef] [PubMed]
- Guilmoto, C.Z. Skewed Sex Ratios at Birth and Future Marriage Squeeze in China and India, 2005–2100. Demography 2012, 49, 77–100. [Google Scholar] [CrossRef] [PubMed]
- Xinhua News Agency. Authorized Release: Eighteenth Communist Party of China Central Committee communique fifth plenary meeting. Available online: http://news.xinhuanet.com/politics/2015-10/29/c_1116983078.htm, 2015 (accessed on 18 August 2019).
- Banerjee, S.G.; Bhatia, M.; Azuela, G.E.; Jaques, I.; Sarkar, A.; Portale, E.; Bushueva, I.; Angelou, N.; Inon, J.G. Global tracking framework. In Sustainable energy for all; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Pruss-Ustun, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, F. New Strategies For Smart Integrated Decentralised Energy Systems. Available online: https://www.metabolic.nl/projects/side-systems/ (accessed on 18 August 2019).
- Morstyn, T.; Hredzak, B.; Agelidis, V. Control Strategies for Microgrids with Distributed Energy Storage Systems: An Overview. IEEE Trans. Smart Grid 2016, 9, 3652–3666. [Google Scholar] [CrossRef]
- Bauwens, T.; Devine-Wright, P. Positive energies? An empirical study of community energy participation and attitudes to renewable energy. Energy Policy 2018, 118, 612–625. [Google Scholar] [CrossRef]
- Dang, J.; Li, C.; Li, J.; Dang, A.; Zhang, Q.; Chen, P.; Kang, S.; Dunn-Rankin, D. Emissions from Solid Fuel Cook Stoves in the HimalayaRegion. Energies 2019, 12, 1089. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yan, B.; Zhou, Y. Urbanization, economic growth, and carbon dioxide emissions in China: A panel cointegration and causality analysis. J. Geogr. Sci. 2016, 26, 131–152. [Google Scholar] [CrossRef]
- Cao, Z.; Wei, J.; Chen, H.B. CO2 emissions and urbanization correlation in China based on threshold analysis. Ecol. Indic. 2016, 61, 193–201. [Google Scholar]
- Chen, B.Z.; Feng, Y. Determinants of economic growth in China: Private enterprise, education, and openness. China Econ. Rev. 2000, 11, 1–15. [Google Scholar] [CrossRef]
- Mai, Y.H.; Peng, X.J.; Chen, W. How fast is the population ageing in China? Asian Popul. Stud. 2013, 9, 216–239. [Google Scholar] [CrossRef]
- Gibson, J.; Boe-Gibson, G.; Stichbury, G. Urban land expansion in India 1992–2012. Food Policy 2015, 56, 100–113. [Google Scholar] [CrossRef]
- Dobbs, R.; Sanke, S. Comparing urbanization in China and India. McKinsey Q. 2010, 7, 1–3. [Google Scholar]
- Pandey, B.; Seto, K.C. Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. J. Environ. Manag. 2015, 148, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Das, P. The urban sanitation conundrum: What can community-managed programmes in India unravel? Environ. Urban. 2015, 27, 505–524. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. The Long Slow Rise of Solar and Wind. Sci. Am. 2014, 310, 52–57. [Google Scholar] [CrossRef]
- Smil, V. Energy transitions: History, requirements, prospects; ABC-CLIO: Santa Barbara, CA, USA, 2010. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Bazouin, G.; Bauer, Z.A.F.; Heavey, C.C.; Fisher, E.; Morris, S.B.; Piekutowski, D.J.Y.; Vencill, T.A.; Yeskoo, T.W. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci. 2015, 8, 2093–2117. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Warner, K.J.; Jones, G.A. The Climate-Independent Need for Renewable Energy in the 21st Century. Energies 2017, 10, 1197. [Google Scholar] [CrossRef]
- Smalley, R.E. Future global energy prosperity: The terawatt challenge. Mrs Bull. 2005, 30, 412–417. [Google Scholar] [CrossRef]
- Dorsch, M.T. Economic development and determinants of environmental concern. Soc. Sci. Q. 2014, 95, 960–977. [Google Scholar] [CrossRef]
- Ahmed, S.; Islam, M.T.; Karim, M.A.; Karim, N.M. Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh. Renew. Energy 2014, 72, 223–235. [Google Scholar] [CrossRef]
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187. [Google Scholar] [CrossRef] [PubMed]
- Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag. 1896, 41, 237–276. [Google Scholar] [CrossRef]
- Revelle, R.; Suess, H.E. Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades. Tellus 1957, 9, 18–27. [Google Scholar] [CrossRef]
China | |||
Unlimited | 2017-limited | 2100-limited | |
Coal (EJ) | 3775 | 1312 | 525 |
Coal Peak | 2026 | 2013 | 2013 |
CO2 (GtCO2) | 357 | 124 | 50 |
% Population | - | 18.7 | 9.1 |
India | |||
Unlimited | 2017-limited | 2100-limited | |
Coal (EJ) | 2667 | 1418 | 1073 |
Coal Peak | 2075 | 2052 | 2044 |
CO2 (GtCO2) | 252 | 134 | 102 |
% Population | - | 17.7 | 13.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warner, K.J.; Jones, G.A. The 21st Century Coal Question: China, India, Development, and Climate Change. Atmosphere 2019, 10, 476. https://doi.org/10.3390/atmos10080476
Warner KJ, Jones GA. The 21st Century Coal Question: China, India, Development, and Climate Change. Atmosphere. 2019; 10(8):476. https://doi.org/10.3390/atmos10080476
Chicago/Turabian StyleWarner, Kevin J., and Glenn A. Jones. 2019. "The 21st Century Coal Question: China, India, Development, and Climate Change" Atmosphere 10, no. 8: 476. https://doi.org/10.3390/atmos10080476
APA StyleWarner, K. J., & Jones, G. A. (2019). The 21st Century Coal Question: China, India, Development, and Climate Change. Atmosphere, 10(8), 476. https://doi.org/10.3390/atmos10080476