New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations
Abstract
:1. Introduction
2. Sites and Measurements and Methods
2.1. Sites
2.1.1. The Puy de Dôme Station (PUY)
2.1.2. The Chacaltaya Station (CHC)
2.1.3. The Nepal Climate Observatory Pyramid Station (PYR)
2.1.4. The Maido Station (MDO)
2.1.5. The Jungfraujoch Station (JFJ)
2.1.6. The Monte Cimone Station (CMN)
2.2. Instrumentation
2.3. Methods
3. Frequencies of Occurrence, Formation Rates, and Growth Rates
3.1. Frequencies of Occurrence
3.2. Formation Rates
3.3. Growth Rates
4. Special Features of NPF Specific to High Altitude Sites
4.1. Influence of Clouds
4.2. Influence of Ions
4.3. Role of the Condensational Sink
4.4. Favorable Air Mass Types and Precursors at High Altitudes
5. Is NPF Favored at a Preferential Altitude?
6. Importance of NPF at High Altitude for the Production of Cloud Condensation Nuclei
7. Outlook
8. Data Availability
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Venzac, H.; Sellegri, K.; Laj, P. Nucleation events detected at the high altitude site of the Puy de Dôme Research Station, France. Boreal Environ. Res. 2007, 12, 345–359. [Google Scholar]
- Rose, C.; Sellegri, K.; Moreno, I.; Velarde, F.; Ramonet, M.; Weinhold, K.; Krejci, R.; Andrade, M.; Wiedensohler, A.; Ginot, P.; et al. CCN production by new particle formation in the free troposphere. Atmos. Chem. Phys. 2017. [Google Scholar] [CrossRef]
- Herrmann, E.; Weingartner, E.; Henne, S.; Vuilleumier, L.; Bukowiecki, N.; Steinbacher, M.; Conen, F.; Collaud Coen, M.; Hammer, E.; Jurányi, Z.; et al. Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. Atmos. 2015. [Google Scholar] [CrossRef]
- Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; et al. Direct Observations of Atmospheric Aerosol Nucleation. Science 2013, 339, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.-M.; Birmili, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Kerminen, V.-M.; Chen, X.; Vakkari, V.; Petäjä, T.; Kulmala, M.; Bianchi, F. Atmospheric new particle formation and growth: Review of field observations. Environ. Res. Lett. 2018, 10. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Carslaw, K.S.; Kulmala, M.; Kerminen, V.M.; Sihto, S.L.; Riipinen, I.; Merikanto, J.; Mann, G.W.; Chipperfield, M.P.; Wiedensohler, A.; et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 2008, 35, L06808. [Google Scholar] [CrossRef]
- Merikanto, J.; Spracklen, D.V.; Mann, G.W.; Pickering, S.J.; Carslaw, K.S. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009, 9, 8601–8616. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, R.; Asmi, A.; Korhonen, H.; Kokkola, H.; Järvenoja, S.; Räisänen, P.; Lehtinen, K.E.J.; Laaksonen, A.; Kerminen, V.-M.; Järvinen, H.; et al. Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model. Atmos. Chem. Phys. 2009, 9, 1747–1766. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.R.; Adams, P.J. Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos. Chem. Phys. 2009, 9, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M. Air pollution control and decreasing new particle formation lead to strong climate warming. Atmos. Chem. Phys. 2012, 12, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Dunne, E.M.; Gordon, H.; Kürten, A.; Almeida, J.; Duplissy, J.; Williamson, C.; Ortega, I.K.; Pringle, K.J.; Adamov, A.; Baltensperger, U.; et al. Global atmospheric particle formation from CERN CLOUD measurements. Science 2016, 354, 1119–1124. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A.D. Atmospheric Nuclei in the Pacific Midtroposphere: Their Nature, Concentration, and Evolution. J. Geophys. Res. 1993, 98, 20633–20647. [Google Scholar] [CrossRef]
- Clarke, A.D.; Li, Z.; Litchy, M. Aerosol dynamics in the equatorial Pacific marine boundary layer: Microphysics, diurnal cycles and entrainment. Geophys. Res. Lett. 1996, 23, 733–736. [Google Scholar] [CrossRef]
- Clarke, A.D.; Varner, J.L.; Eisele, F.; Mauldin, R.L.; Tanner, D.; Litchy, M. Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1. J. Geophys. Res. 1998, 103, 16397–16409. [Google Scholar] [CrossRef]
- Clarke, A.D.; Kapustin, V.N.; Eisele, F.L.; Weber, R.J.; Mc-Murry, P.H. Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. Geophys. Res. Lett. 1999, 26, 2425–2428. [Google Scholar] [CrossRef]
- Clarke, A.D.; Eisele, F.; Kapustin, V.N.; Moore, K.; Tanner, D.; Mauldin, L.; Litchy, M.; Lienert, B.; Carroll, M.A.; Albercook, G. Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics. J. Geophys. Res. 1999, 104, 5735–5744. [Google Scholar] [CrossRef]
- Quinn, P.; Bates, T.S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51–56. [Google Scholar] [CrossRef]
- Pietikäinen, J.-P.; Mikkonen, S.; Hamed, A.; Hienola, A.I.; Birmili, W.; Kulmala, M.; Laaksonen, A. Analysis of nucleation events in the European boundary layer using the regional aerosol–climate model REMO-HAM with a solar radiation-driven OH-proxy. Atmos. Chem. Phys. 2014, 14, 11711–11729. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Andrews, E.; Aliaga, D.; Andrade, M.; Angelov, H.; Bukowiecki, N.; Ealo, M.; Fialho, P.; Flentje, H.; Hallar, A.; et al. Identification of topographic features influencing aérosol observations at High altitude stations. Atmos. Chem. Phys. 2018, 18, 12289–12313. [Google Scholar] [CrossRef]
- Clarke, A.D.; Kapustin, V.N. A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere. J. Atmos. Sci. 2002, 59, 363–382. [Google Scholar] [CrossRef]
- Waddicor, D.A.; Vaughan, G.; Choularton, T.W.; Bower, K.N.; Coe, H.; Gallagher, M.; Williams, P.I.; Flynn, M.; Volz-Thomas, A.; Pätz, H.W.; et al. Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm. Atmos. Chem. Phys. 2012, 12, 6157–6172. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A.D.; Kapustin, V.N. Hemispheric Aerosol Vertical Profiles Anthropogenic Impacts on Optical Depth and Cloud Nuclei. Science 2010, 329, 1488–1492. [Google Scholar] [CrossRef]
- Young, L.-H.; Benson, D.R.; Montanaro, W.M.; Lee, S.-H.; Pan, L.L.; Rogers, D.C.; Jensen, J.; Stith, J.L.; Davis, C.A.; Campos, T.L.; et al. Enhanced new particle formation observed in the northern midlatitude tropopause region. J. Geophys. Res. 2007, 112, D10218. [Google Scholar] [CrossRef]
- Bianchi, F.; Tröstl, J.; Junninen, H.; Frege, C.; Henne, S.; Hoyle, C.R.; Molteni, U.; Herrmann, E.; Adamov, A.; Bukowiecki, N.; et al. New particle formation in the free troposphere A question of chemistry and timing. Science 2016, 352, 1109–1112. [Google Scholar] [CrossRef]
- Tröstl, J.; Wayne, K.; Chuang, H.; Gordon, M.; Heinritzi, C.; Yan, U.; Molteni, L.; Ahlm, C.; Frege, F.; Bianchi, R.; et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 2016, 533, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Wehner, B.; Werner, F.; Ditas, F.; Shaw, R.A.; Kulmala, M.; Siebert, H. Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds. Atmos. Chem. Phys. 2015, 15, 11701–11711. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, H.; Carslaw, K.S.; Spracklen, D.V.; Mann, G.W.; Woodhouse, M.T. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study. J. Geophys. Res. 2008, 113, D15204. [Google Scholar] [CrossRef]
- Crumeyrolle, S.; Manninen, H.E.; Sellegri, K.; Roberts, G.; Gomes, L.; Kulmala, M.; Weigel, R.; Laj, P.; Schwarzenboeck, A. New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmos. Chem. Phys. 2010, 10, 6721–6735. [Google Scholar] [CrossRef] [Green Version]
- Hamburger, T.; McMeeking, G.; Minikin, A.; Birmili, W.; Dall’Osto, M.; O’Dowd, C.; Flentje, H.; Henzing, B.; Junninen, H.; Kristensson, A.; et al. Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign. Atmos. Chem. Phys. 2011, 11, 1065–1082. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.; Sellegri, K.; Freney, E.; Dupuy, R.; Colomb, A.; Pichon, J.-M.; Ribeiro, M.; Bourianne, T.; Burnet, F.; Schwarzenboeck, A. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign. Atmos. Chem. Phys. 2015, 15, 10203–10218. [Google Scholar] [CrossRef] [Green Version]
- Sellegri, K.; Laj, P.; Peron, F.; Dupuy, R.; Legrand, M.; Preunkert, S.; Putaud, J.-P.; Cachier, H.; Ghermandi, G. Mass balance of free tropospheric aerosol at the Puy de Dôme (France) in winter. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bonasoni, P.; Laj, P.; Angelini, F.; Arduini, J.; Bonafè, U.; Calzolari, F.; Cristofanelli, P.; Decesari, S.; Facchini, M.C.; Fuzzi, S.; et al. The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Sci. Total Environ. 2008, 391, 252–261. [Google Scholar] [CrossRef]
- Baray, J.L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.P.; Hauchecorne, A.; Godin Beekmann, S.; De Mazière, M.; Hermans, C.; et al. Maïdo observatory: A new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef]
- Fischer, H.; Kormann, R.; Klüpfel, T.; Gurk, C.; Königstedt, R.; Parchatka, U.; Mühle, J.; Rhee, T.S.; Brenninkmeijer, C.A.M.; Bonasoni, P.; et al. Ozone production and trace gas correlationsduring the June MINATROC intensive measurement campaign at Mt. Cimone. Atmos. Chem. Phys. 2003, 3, 725–738. [Google Scholar] [CrossRef]
- Mirme, A.; Tamm, E.; Mordas, G.; Vana, M.; Uin, J.; Mirme, S.; Bernotas, T.; Laakso, L.; Hirsikko, A.; Kulmala, M. A widerange multi-channel Air Ion Spectrometer. Boreal Environ. Res. 2007, 12, 247–264. [Google Scholar]
- Mäkelä, J.M.; Riihelä, M.; Ukkonen, A.; Jokinen, V.; Keskinen, J. Comparison of mobility equivalent diameter with Kelvin-Thomson diameter using ion mobility data. J. Chem. Phys. 1996, 105, 1562–1571. [Google Scholar] [CrossRef]
- Mirme, S.; Mirme, A. The mathematical principles and design of the NAIS—A spectrometer for the measurement of cluster ion and nanometer aerosol size distributions. Atmos. Meas. Tech. 2013, 6, 1061–1071. [Google Scholar] [CrossRef]
- Venzac, H.; Sellegri, K.; Laj, P.; Villani, P.; Bonasoni, P.; Marinoni, A.; Cristofanelli, P.; Calzolari, F.; Fuzzi, S.; Decesari, S.; et al. High frequency new particle formation in the Himalayas. Proc. Natl Acad. Sci. USA 2008, 105, 15666–15671. [Google Scholar] [CrossRef] [Green Version]
- Foucart, B.; Sellegri, K.; Tulet, P.; Rose, C.; Metzger, J.M.; Picard, D. High occurrence of new particle formation events at the Maïdo high altitude observatory (2150 m), Reunion Island (Indian Ocean). Atmos. Chem. Phys. 2018, 18, 9243–9261. [Google Scholar] [CrossRef]
- Kulmala, M.; Petäjä, T.; Nieminen, T.; Sipilä, M.; Manninen, H.E.; Lehtipalo, K.; Dal Maso, M.; Aalto, P.P.; Junninen, H.; Paasonen, P. Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc. 2012, 7, 1651–1667. [Google Scholar] [CrossRef]
- Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; et al. Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 2012, 5, 657–685. [Google Scholar] [CrossRef]
- Boulon, J.; Sellegri, K.; Hervo, M.; Picard, D.; Pichon, J.-M.; Freville, P.; Laj, P. Investigation of nucleation events vertical extent: A long term study at two different altitude sites. Atmos. Chem. Phys. 2011, 11, 5625–5639. [Google Scholar] [CrossRef]
- Rose, C.; Boulon, J.; Hervo, M.; Holmgren, H.; Asmi, E.; Ramonet, M.; Laj, P.; Sellegri, K. Long-term observations of cluster ion concentration, sources and sinks in clear sky conditions at the high-altitude site of the Puy de Dôme, France. Atmos. Chem. Phys. 2013, 13, 11573–11594. [Google Scholar] [CrossRef]
- Boulon, J.; Sellegri, K.; Venzac, H.; Picard, D.; Weingartner, E.; Wehrle, G.; Collaud Coen, M.; Bütikofer, R.; Flückiger, E.; Baltensperger, U.; et al. New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l.; Switzerland). Atmos. Chem. Phys. 2010, 10, 9333–9349. [Google Scholar] [CrossRef]
- Rose, C.; Foucart, B.; Picard, D.; Colomb, A.; Metzger, J.-M.; Tulet, P.; Sellegri, K. New particle formation in the active volcanic plume of the Piton de la Fournaise: Specific features from a long-term dataset. Atmos. Chem. Phys. 2019. [Google Scholar] [CrossRef]
- Rose, C.; Sellegri, K.; Velarde, F.; Moreno, I.; Ramonet, M.; Weinhold, K.; Krejci, R.; Ginot, P.; Andrade, M.; Wiedensohler, A.; et al. Frequent nucleation events at the high altitude station of Chacaltaya (5240 m a.s.l.), Bolivia. Atmos. Environ. 2015, 102, 18–29. [Google Scholar] [CrossRef]
- Dal Maso, M.; Kulmala, M.; Riipinen, I.; Wagner, R.; Hussein, T.; Aalto, P.P.; Lehtinen, K.E.J. Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res. 2005, 10, 323–336. [Google Scholar]
- Hirsikko, A.; Bergman, T.; Laakso, L.; Dal Maso, M.; Riipinen, I.; Hõrrak, U.; Kulmala, M. Identification and classification of the formation of intermediate ions measured in boreal forest. Atmos. Chem. Phys. 2007, 7, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Vana, M.; Ehn, M.; Petäjä, T.; Vuollekoski, H.; Aalto, P.; de Leeuw, G.; Ceburnis, D.; O’Dowd, C.D.; Kulmala, M. Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmos. Res. 2008, 90, 278–286. [Google Scholar] [CrossRef]
- Yli-Juuti, T.; Riipinen, I.; Aalto, P.P.; Nieminen, T.; Maenhaut, W.; Janssens, I.A.; Claeys, M.; Salma, I.; Ocskay, R.; Hoffer, A. Characteristics of new particle formation events and cluster ions at Kpuszta, Hungary. Boreal Environ. Res. 2009, 14, 683–698. [Google Scholar]
- Hirsikko, A.; Laakso, L.; Horrak, U.; Aalto, P.P.; Kerminen, V.; Kulmala, M. Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environ. Res. 2005, 10, 357. [Google Scholar]
- Tammet, H.; Kulmala, M. Simulation tool for atmospheric aerosol nucleation bursts. J. Aerosol Sci. 2005, 36, 173–196. [Google Scholar] [CrossRef]
- Lehtinen, K.E.J.; Dal Maso, M.; Kulmala, M.; Kerminen, V.-M. Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. J. Aerosol Sci. 2007, 38, 988–994. [Google Scholar] [CrossRef]
- Hallar, A.G.; Lowenthal, D.H.; Chirokova, G.; Borys, R.D.; Wiedinmyer, C. Persistent daily new particle formation at a mountain-top location. Atmos. Environ. 2011, 45, 4111–4115. [Google Scholar] [CrossRef]
- García, M.I.; Rodríguez, S.; González, Y.; García, R.D. Climatology of new particle formation at Izaña mountain GAW observatory in the subtropical North Atlantic. Atmos. Chem. Phys. 2014, 14, 3865–3881. [Google Scholar] [CrossRef]
- Neitola, K.; Asmi, E.; Komppula, M.; Hyvärinen, A.-P.; Raatikainen, T.; Panwar, T.S.; Sharma, V.P.; Lihavainen, H. New particle formation infrequently observed in Himalayan foothills—Why? Atmos. Chem. Phys. 2011, 11, 8447–8458. [Google Scholar] [CrossRef]
- Minikin, A.; Petzold, A.; Ström, J.; Krejci, R.; Seifert, M.; van Velthoven, P.; Schlager, H.; Schumann, U. Aircraft observations of the upper tropospheric fine particle aerosol in the northern and southern hemispheres at midlatitudes. Geophys. Res. Lett. 2003, 30, 1503. [Google Scholar] [CrossRef]
- Manninen, H.E.; Nieminen, T.; Asmi, E.; Gagné, S.; Häkkinen, S.; Lehtipalo, K.; Aalto, P.; Vana, M.; Mirme, A.; Mirme, S.; et al. EUCAARI ion spectrometer measurements at 12 European sites—Analysis of new particle formation events. Atmos. Chem. Phys. 2010, 10, 7907–7927. [Google Scholar] [CrossRef]
- Hallar, A.G.; Petersen, R.; McCubbin, I.B.; Lowenthal, D.; Lee, S.; Andrews, E.; Yu, F.Q. Climatology of New Particle Formation and Corresponding Precursors at Storm Peak Laboratory. Aerosol Air Qual. Res. 2016, 16, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.; Sui, X.; Chen, J.; Jayaratne, R.; Mellouki, A. Investigation of new particle formation at the summit of Mt. Tai, China. Atmos. Chem. Phys. 2018, 18, 2243–2258. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.R.; McMurry, P.H.; Mauldin, R.L., III; Tanner, D.J.; Eisele, F.L.; Clarke, A.D.; Kapustin, V.N. New particle formation in the remote troposphere: A comparison of observations at various sites. Geophys. Res. Lett. 1999, 26, 307–310. [Google Scholar] [CrossRef]
- Weber, J.R.; McMurry, P.H.; Eisele, F.L.; Tanner, D.J. Measurements ofexpected nucleation precursors species and 3–500 nm diameter particles at Mauna Loa, Hawaii. J. Atmos. Sci. 1995, 52, 2242–2257. [Google Scholar] [CrossRef]
- Modini, R.L.; Ristovski, Z.D.; Johnson, G.R.; He, C.; Surawski, N.; Morawska, L.; Suni, T.; Kulmala, M. New particle formation and growth at a remote, sub-tropical coastal location. Atmos. Chem. Phys. 2009, 9, 7607–7621. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Stolzenburg, M.R.; McMurry, P.H.; Smith, J.N. Estimating nanoparticle growth rates from size-dependent charged fractions: Analysis of new particle formation events in Mexico City. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Perry, K.D.; Hobbs, P.V. Further evidence for particle nucleation in clean air adjacent to marine cumulus clouds. J. Geophys. Res. 1994, 99, 22803–22818. [Google Scholar] [CrossRef]
- Keil, A.; Wendisch, M. Bursts of Aitken mode and ultrafine particles observed at the top of continental boundary layer clouds. J. Aerosol Sci. 2001, 32, 649–660. [Google Scholar] [CrossRef]
- Mirme, S.; Mirme, A.; Minikin, A.; Petzold, A.; Horrak, U.; Kerminen, V.-M.; Kulmala, M. Atmospheric sub-3 nm particles at high altitudes. Atmos. Chem. Phys. 2010, 10, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Laakso, L.; Petäjä, T.; Lehtinen, K.E.; Kulmala, M.; Paatero, J.; Horrak, U.; Tammet, H.; Joutsensaari, J. Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmos. Chem. Phys. 2004, 4, 3947–3973. [Google Scholar] [CrossRef]
- Lovejoy, E.R.; Curtius, J.; Froyd, K.D. Atmospheric ion induced nucleation of sulfuric acid and water. J. Geophys. Res. 2004, 109, D08204. [Google Scholar] [CrossRef]
- Luts, A.; Parts, T.-E.; Vana, M. New aerosol particle formation via certain ion driven processes. Atmos. Res. 2006, 82, 547–553. [Google Scholar] [CrossRef]
- Kazil, J.; Harrison, R.G.; Lovejoy, E.R. Tropospheric New Particle Formation and the Role of Ions. Space Sci. Rev. 2008, 137, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, T.; Paasonen, P.; Manninen, H.E.; Sellegri, K.; Kerminen, V.-M.; Kulmala, M. Parameterization of ion-induced nucleation rates based on ambient observations. Atmos. Chem. Phys. 2011, 11, 3393–3402. [Google Scholar] [CrossRef] [Green Version]
- Yu, F. From molecular clusters to nanoparticles: Second-generation ion-mediated nucleation model. Atmos. Chem. Phys. 2006, 6, 5193–5211. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Z.; Luo, G.; Turco, R. Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos. Chem. Phys. 2008, 8, 2537–2554. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagné, S.; Ickes, L.; Kürten, A.; et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aérosol nucleation. Nat. Lett. 2011, 476, 429. [Google Scholar] [CrossRef]
- Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Ion-induced nucleation of pure biogenic particles? Nature 2016, 533, 521–526. [Google Scholar] [CrossRef]
- Wagner, R.; Chao, Y.; Lehtipalo, K.; Duplissy, J.; Nieminen, T.; Kangasluoma, J.; Ahonen, L.R.; Dada, L.; Kontkanen, J.; Hanna, E.; et al. The role of ions in new particle formation. Atmos. Chem. Phys. 2017, 17, 15181–15197. [Google Scholar] [CrossRef]
- Laakso, L.; Hirsikko, A.; Grönholm, T.; Kulmala, M.; Luts, A.; Parts, T.-E. Waterfalls as sources of small charged aerosol particles. Atmos. Chem. Phys. 2007, 7, 2271–2275. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E. Solar variability and the lower atmosphere. Bull. Am. Meteorol. Soc. 1975, 56, 1240–1248. [Google Scholar] [CrossRef]
- Marsh, N.D.; Svensmark, H. Low Cloud Properties Influenced by Cosmic Rays. Phys. Rev. Lett. 2000, 85, 5004. [Google Scholar] [CrossRef]
- Marsh, N.; Svensmark, H. Galactic cosmic ray and El Niño–Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J. Geophys. Res. 2003, 108, 4195. [Google Scholar] [CrossRef]
- Sloan, T.; Wolfendale, A.W. Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett. 2008, 3, 024001. [Google Scholar] [CrossRef] [Green Version]
- Eichler, A.; Olivier, S.; Henderson, K.; Laube, A.; Beer, J.; Papina, T.; Gäggeler, H.W.; Schwikowski, M. Temperature response in the Altai region lags solar forcing. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Horrak, U.; Aalto, P.P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J.M.; Laakso, L.; Kulmala, M. Characterization of positive air ions in boreal air at the HyytiälÄ SMEAR station. Atmos. Chem. Phys. 2007, 7, 9465–9517. [Google Scholar] [CrossRef]
- Mishev, A.; Hristova, E. Gamma Background Measurements at BEO Moussala, Institute for Nuclear Research and Nuclear Energy. Bulg. Acad. Sci. 2011, 1–18. [Google Scholar]
- Rose, C.; Sellegri, K.; Asmi, E.; Hervo, M.; Freney, E.; Junninen, H.; Duplissy, J.; Sipilä, M.; Kontkanen, J.; Lehtipalo, K.; et al. Observation of neutral clusters during particle formation in the free troposphere. Atmos. Chem. Phys. 2015, 15, 3413–3428. [Google Scholar] [CrossRef]
- Pirjola, L.; Kulmala, M.; Wilck, M.; Bischoff, A.; Stratmann, F.; Otto, E. Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison. J. Aerosol Sci. 1999, 30, 1079–1094. [Google Scholar] [CrossRef]
- Lanz, V.A.; Prévôt, A.S.H.; Alfarra, M.R.; Weimer, S.; Mohr, C.; DeCarlo, P.F.; Gianini, M.F.D.; Hueglin, C.; Schneider, J.; Favez, O.; et al. Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: An overview. Atmos. Chem. Phys. 2010, 10, 10453–10471. [Google Scholar] [CrossRef]
- Sogacheva, L.; Dal Maso, M.; Kerminen, V.-M.; Kulmala, M. Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiälä, Southern Finland, based on back trajectories analysis. Boreal Environ. Res. 2005, 10, 479–491. [Google Scholar]
- Dada, L.; Paasonen, P.; Nieminen, T.; Buenrostro Mazon, S.; Kontkanen, J.; Peräkylä, O.; Lehtipalo, K.; Hussein, T.; Petäjä, T.; Kerminen, V.-M.; et al. Long-term analysis of clear-sky new particle formation events and nonevents in Hyytiälä. Atmos. Chem. Phys. 2017, 17, 6227–6241. [Google Scholar] [CrossRef]
- Sellegri, K.; Laj, P.; Venzac, H.; Boulon, J.; Picard, D.; Villani, P.; Bonasoni, P.; Marinoni, A.; Cristofanelli, P.; Vuillermoz, E. Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5079 m), Nepal. Atmos. Chem. Phys. 2010, 10, 10679–10690. [Google Scholar] [CrossRef] [Green Version]
- Kiendler-Scharr, A.; Wildt, J.; Dal Maso, M.; Hohaus, T.; Kleist, E.; Mentel, T.F.; Tillmann, R.; Uerlings, R.; Schurr, U.; Wahner, A. New particle formation in forests inhibited by isoprene emissions. Nature 2009, 461, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Freney, E.; Sellegri, K.; Chrit, M.; Adachi, K.; Brito, J.; Waked, A.; Borbon, A.; Colomb, A.; Dupuy, R.; Pichon, J.-M.; et al. Aerosol composition and the contribution of SOA formation over Mediterranean forests. Atmos. Chem. Phys. 2018, 18, 7041–7056. [Google Scholar] [Green Version]
- Petäjä, T.; Mauldin, R.L., III; Kosciuch, E.; McGrath, J.; Nieminen, T.; Boy, M.; Adamov, A.; Kotiaho, T.; Kulmala, M. Sulfuric acid and OH concentrations in a boreal forest site. Atmos. Chem. Phys. 2009, 9, 7435–7448. [Google Scholar] [CrossRef] [Green Version]
- Nishita, C.; Osada, K.; Kido, M.; Matsunaga, K.; Iwasaka, Y. Nucleation mode particles in upslope valley winds at Mount Norikura, Japan: Implications for the vertical extent of new particle formation events in the lower troposphere. J. Geophys. Res. 2008, 113, D06202. [Google Scholar] [CrossRef]
- Wehner, B.; Siebert, H.; Ansmann, A.; Ditas, F.; Seifert, P.; Stratmann, F.; Wiedensohler, A.; Apituley, A.; Shaw, R.A.; Manninen, H.E.; et al. Observations of turbulence-induced new particle formation in the residual layer. Atmos. Chem. Phys. 2010, 10, 4319–4330. [Google Scholar] [CrossRef] [Green Version]
- Lihavainen, H.; Kerminen, V.-M.; Komppula, M.; Hatakka, J.; Aal-tonen, V.; Kulmala, M.; Viisanen, Y. Prodution of “potential” cloud condensation nuclei production associated with atmo-spheric new-particle formation in northern Finland. J. Geophys. Res. 2003, 108, 4782. [Google Scholar] [CrossRef]
- Kerminen, V.-M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; et al. Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys. 2012, 12, 12037–12059. [Google Scholar] [CrossRef]
- Laakso, L.; Merikanto, J.; Vakkari, V.; Laakso, H.; Kulmala, M.; Molefe, M.; Kgabi, N.; Mabaso, D.; Carslaw, K.S.; Spracklen, D.V.; et al. Boundary layer nucleation as a source of new CCN in savannah environment. Atmos. Chem. Phys. 2013, 13, 1957–1972. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; Freney, E.; Chauvigné, A.; Baray, J.L.; Rose, C.; Picard, D.; Colomb, A.; Hadad, D.; Abboud, M.; Farah, W.; et al. Seasonal variation of aerosol size distribution data at the puy de Dôme station with emphasis on the boundary layer/free troposphere segregation. Atmosphere 2018, 9, 244. [Google Scholar] [CrossRef]
- Yli-Juuti, T.; Nieminen, T.; Hirsikko, A.; Aalto, P.P.; Asmi, E.; Hõrrak, U.; Manninen, H.E.; Patokoski, J.; Dal Maso, M.; Petäjä, T.; et al. Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: Variation with particle size, season, data analysis method and ambient conditions. Atmos. Chem. Phys. 2011, 11, 12865–12886. [Google Scholar] [CrossRef]
- Suni, T.; Kulmala, M.; Hirsikko, A.; Bergman, T.; Laakso, L.; Aalto, P.P.; Leuning, R.; Cleugh, H.; Zegelin, S.; Hughes, D.; et al. Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest. Atmos. Chem. Phys. 2008, 8, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Virkkula, A.; Hirsikko, A.; Vana, M.; Aalto, P.P.; Hillamo, R.; Kulmala, M. Charged particle size distributions and analysis of particle formation events at the Finnish antarctic research station aboa. Boreal Environ. Res. 2007, 12, 397–408. [Google Scholar]
Station | Instrument | Data Availability | References | |
---|---|---|---|---|
Period | Number of sampled days for NPF frequency calculation | |||
PUY | AIS/NAIS | February 2007–June 2010, extended until February 2012 for the calculation of NPF frequency and CS statistics | 952 (1440 for the calculation of NPF frequency) | [43] Boulon et al., 2011 [44] Rose et al., 2013 |
JFJ | NAIS | April 2008–May 2009 | 309 | [45] Boulon et al., 2010 |
PYR | SMPS | March 2006–August 2007 | 511 | [39] Venzac et al., 2008 |
CMN | DMPS | January 2009–December 2009 | 316 | - |
MDO | DMPS | January 2015–December 2015 | 250 * | [40] Foucart et al., 2018; [46] Rose et al., 2019 |
CHC | NAIS | January 2012–December 2012 | 362 | [2,47] Rose et al., 2015, 2017 |
Station | Location, Altitude (m a.s.l.), [ref] | NPF Mean Freq. | NPF Mean J (cm−3 s−1) | NPF Mean GR (nm h−1) | NPF INN (%) | Median CS [25ile–75ile] (10−3 s−1) |
---|---|---|---|---|---|---|
PUY | France, 1465, [43] | 30% * | J2 = 1.38 ± 1.64 * | GR3–7 = 6.52 ± 4.61 * | 12.49 ± 2.03 | 2.77 [0.86–7.24] (NPF) |
GR7–20 = 8.86 ± 5.50 * | 2.87 [0.80–7.37] (no NPF) * | |||||
JFJ | Switzerland, 3580, [45] | 14.5% | J2 = 2.65 ± 2.0 * | GR3–7 = 5.3 ± 3.5 | 21.8 | 0.157 [0.07–0.31] (NPF) |
GR7–20 = 5.7 ± 2.2 | 0.093 [0.04–0.20] (no NPF) * | |||||
PYR | Himalaya, 5079, [39] | 39% * | J10 = 0.18 | 1.8 ± 0.7 | ||
CMN | Italy, 2165 | 28% * | ||||
MDO | Indian Ocean, 2160 | 67% * | J2 = 1.57 ± 2.07 * | GR12–19 = 19.98 ± 12.7 | 0.55 [0.34–0.88] (NPF) | |
0.49 [0.22–1.27] (no NPF) * | ||||||
CHC | Bolivian Andes, [47] | 64% | J2 = 2.33 ± 2.06 * | GR3–7 = 10.31 ± 14.65 | 14.8 | 3.13 [2.03–4.13] (NPF) |
GR7–20 = 13.65 ± 15.91 | 2.06 [0.84–3.44] (no NPF) | |||||
Storm Peak | USA, 3210, [55] | 52% | J8 = 7.47 ± 5.1 | GR3–15 = 0.65 ± 0.14 | 1.20 | |
Izaña | Atlantic O., 2373, [56] | 30% | J10 = 0.46 ± 0.57 | GR10–25 = 0.43 ± 0.21 | 1.55 | |
Mukteshwar | Himalaya, 2180 [57] | 14.5% | J25 = 0.40 | GR15–25 = 2.43 | 7.30 | |
Mauna Loa | Pacific Ocean, 3400 | J3 = 0.5 [58] | GR3–15 = 0.40 | |||
Average low altitude | Low altitude sites from [59] and [60] ** <1000 m a.s.l. | 38 ± 13.7% | J2 = 12.03 ± 13.15 | GR3–7 = 4.18 ± 1.14 | 6.28 ± 6.69 | 3.7 ± 2.5 (NPF) 6.0 ± 3.9 (no NPF) |
GR7–20 = 6.45 ± 4.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellegri, K.; Rose, C.; Marinoni, A.; Lupi, A.; Wiedensohler, A.; Andrade, M.; Bonasoni, P.; Laj, P. New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations. Atmosphere 2019, 10, 493. https://doi.org/10.3390/atmos10090493
Sellegri K, Rose C, Marinoni A, Lupi A, Wiedensohler A, Andrade M, Bonasoni P, Laj P. New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations. Atmosphere. 2019; 10(9):493. https://doi.org/10.3390/atmos10090493
Chicago/Turabian StyleSellegri, Karine, Clemence Rose, Angela Marinoni, Angelo Lupi, Alfred Wiedensohler, Marcos Andrade, Paolo Bonasoni, and Paolo Laj. 2019. "New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations" Atmosphere 10, no. 9: 493. https://doi.org/10.3390/atmos10090493
APA StyleSellegri, K., Rose, C., Marinoni, A., Lupi, A., Wiedensohler, A., Andrade, M., Bonasoni, P., & Laj, P. (2019). New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations. Atmosphere, 10(9), 493. https://doi.org/10.3390/atmos10090493