Flash Drought Characteristics Based on U.S. Drought Monitor
Abstract
:1. Introduction
2. Data
2.1. U.S. Drought Monitor (USDM)
2.2. Phase 2 of the North American Land Data Assimilation System (NLDAS-2)
3. Frequency of Occurrence
4. Flash Drought and ENSO
5. Antecedent Conditions and Evolution of Selected Flash Droughts
6. Composite Analysis
7. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Amer. Meteor. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Svoboda, M.; Johnson, D.; Mueller, R.; Tadesse, T.; Wardlow, B.; Brown, J. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor. 2016, 218–219, 230–242. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information (NCEI), 2019: U.S. Billion-Dollar Weather and Climate Disasters. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 25 July 2019).
- Hunt, E.; Hubbard, K.G.; Wilhite, D.A.; Arkebauer, T.J.; Dutcher, A.L. The development and evaluation of a soil moisture index. Int. J. Climatol. 2009, 29, 747–759. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Heat wave flash droughts in decline. Geophys. Res. Lett. 2015, 42, 2823–2829. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Precipitation deficit flash droughts over the United States. J. Hydrometeor. 2016, 17, 1169–1184. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.; Basara, J.; Svoboda, M. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeor. 2013, 14, 1057–1074. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Svoboda, M. Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor. 2014, 15, 938–956. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D.; Wakefield, R.A.; Flanagan, P.X.; Xiao, X. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. J. Hydrometeor. 2019, 20, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteor. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Hoell, A.; Perlwitz, J.; Dewes, C.; Wolter, K.; Rangwala, I.; Quan, X.; Eischeid, J. Anthropogenic Contributions to the Intensity of the 2017 United States Northern Great Plains Drought. Bull. Am. Meteor. Soc. 2019, 100, S19–S24. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Schubert, S.D.; Koster, R.D.; Chang, Y. Attribution of the 2017 Northern High Plains Drought. Bull. Am. Meteor. Soc. 2019, 100, S25–S29. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. 2012, 117, D03109. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Cosgrove, B.; Sheffield, J.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; Livneh, B.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. 2012, 117, D03110. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, K.E.; Lohmann, D.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Cosgrove, B.A.; Sheffield, J.; Duan, Q.; Luo, L.; et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 2004, 109, D07S90. [Google Scholar] [CrossRef]
- Koster, R.; Suarez, M. The components of the SVAT scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour. 1994, 17, 61–78. [Google Scholar] [CrossRef]
- Koster, R.; Suarez, M. Energy and Water Balance Calculations in the Mosaic LSM; NASA Technical Memorandum-104606; NASA: Greenbelt, MD, USA, 1996; Volume 9, p. 60.
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F. One-dimensional Statistical Dynamic Representation of Subgrid Spatial Variability of Precipitation in the Two-Layer Variable Infiltration Capacity Model. J. Geophys. Res. 1996, 101, 21403–21422. [Google Scholar] [CrossRef]
- Burnash, R.J.C.; Ferral, R.L.; McGuire, R.A. A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computer; U.S. Department of Commerce; National Weather Service; State of California, Department of Water Resources: Sacramento, CA, USA, 1973.
- Burnash, R.J.C. The NWS River Forecast System–Catchment Modeling, in Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Colorado, CO, USA, 1995; pp. 311–366. [Google Scholar]
- Mo, K.C.; Shukla, S.; Lettenmaier, D.P.; Chen, L.-C. Do Climate Forecast System (CFSv2) forecasts improve seasonal soil moisture prediction? Geophys. Res. Lett. 2012, 39, L23703. [Google Scholar] [CrossRef]
- Kousky, V.E.; Higgins, R.W. An Alert Classification System for Monitoring and Assessing the ENSO Cycle. Wea. Forecast. 2007, 22, 353–371. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev. 1986, 114, 2352–2362. [Google Scholar] [CrossRef]
- Chen, L.-C.; Van den Dool, H.; Becker, E.; Zhang, Q. ENSO Precipitation and Temperature Forecasts in the North American Multimodel Ensemble: Composite Analysis and Validation. J. Clim. 2017, 30, 1103–1125. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R. Causes and Predictability of the 2012 Great Plains Drought. Bull. Am. Meteor. Soc. 2014, 95, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought onset mechanisms revealed by satellite solarinduced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 2015, 120. [Google Scholar] [CrossRef]
- Rippey, B.R. The U.S. Drought of 2012. Weather Clim. Extremes 2015, 10, 57–64. [Google Scholar] [CrossRef]
- Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.L.; Law, B.E.; Litvak, M.E.; Brunsell, N.A.; et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA 2016, 113, 5880–5885. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kliest, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Janicot, S.; Moron, V.; Fontaine, B. Sahel droughts and ENSO dynamics. Geophys. Res. Lett. 1996, 23, 515–518. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Cook, E.; Lall, U.; Ray, B.K. Spatiotemporal Variability of ENSO and SST Teleconnections to Summer Drought over the United States during the Twentieth Century. J. Clim. 2000, 13, 4244–4255. [Google Scholar] [CrossRef]
- Barlow, M.; Nigam, S.; Berbery, E.H. ENSO, Pacific Decadal Variability, and U.S. Summertime Precipitation, Drought, and Stream Flow. J. Clim. 2001, 14, 2105–2128. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Schemm, J.E.; Yoo, S. Influence of ENSO and the Atlantic Multidecadal Oscillation on Drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef] [Green Version]
No. | Drought Year | Fast-Development Period | Location | Lat-Lon Box |
---|---|---|---|---|
1 | 2000 | 4 July to 5 September | Southern U.S. | 28–37° N; 85–106° W |
2 | 2003 | 1 July to 2 September | Central U.S. | 32–47° N; 88–104° W |
3 | 2006 | 6 June to 1 August | Northern Plains | 40–49° N; 89–117° W |
4 | 2007 | 3 July to 7 August | Northern Rocky | 42–49° N; 108–118° W |
5 | 2012 | 1 May to 7 August | Central U.S. | 33–47° N; 80–114° W |
Drought No. | Three-month SPI (Sharp Decline?) | T Anomaly (Sharp Decline?) | ET Anomaly (Sharp Decline?) | SM Anomaly (Sharp Decline?) |
---|---|---|---|---|
a. Within 3 Months before Drought Onset | ||||
1 | BN to NN (N) | AN (N) | BN (N) | BN (N) |
2 | AN (N) | NN (N) | AN (N) | NN (N) |
3 | AN (N) | AN (N) | AN (N) | AN (Y) |
4 | BN (N) | AN (N) | AN (N) | AN to BN (Y) |
5 | NN (N) | AN (N) | AN (N) | BN (N) |
b. During the Fast-Development Phase | ||||
1 | BN (Y) | AN (N) | BN (Y) | BN (Y) |
2 | AN to BN (Y) | AN (N) | BN (Y) | BN (Y) |
3 | BN (Y) | AN (N) | AN to BN (Y) | BN (Y) |
4 | BN (N) | AN (N) | AN to BN (Y) | BN (Y) |
5 | BN (Y) | AN (N) | AN to BN (Y) | BN (Y) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.G.; Gottschalck, J.; Hartman, A.; Miskus, D.; Tinker, R.; Artusa, A. Flash Drought Characteristics Based on U.S. Drought Monitor. Atmosphere 2019, 10, 498. https://doi.org/10.3390/atmos10090498
Chen LG, Gottschalck J, Hartman A, Miskus D, Tinker R, Artusa A. Flash Drought Characteristics Based on U.S. Drought Monitor. Atmosphere. 2019; 10(9):498. https://doi.org/10.3390/atmos10090498
Chicago/Turabian StyleChen, L. Gwen, Jon Gottschalck, Adam Hartman, David Miskus, Rich Tinker, and Anthony Artusa. 2019. "Flash Drought Characteristics Based on U.S. Drought Monitor" Atmosphere 10, no. 9: 498. https://doi.org/10.3390/atmos10090498
APA StyleChen, L. G., Gottschalck, J., Hartman, A., Miskus, D., Tinker, R., & Artusa, A. (2019). Flash Drought Characteristics Based on U.S. Drought Monitor. Atmosphere, 10(9), 498. https://doi.org/10.3390/atmos10090498