Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area
Abstract
:1. Introduction
2. Datasets and Method
2.1. AERONET Ground-Observed AOD
2.2. Descriptions of MODIS Aerosol Algorithms and Products
2.2.1. The DT Aerosol Algorithm and Product
2.2.2. The DB Aerosol Algorithm and Product
2.2.3. The Merged DT/DB Algorithm and Product
2.3. Spatio-Temporal Matching for Satellite-Retrieved AOD Products with Ground-Based Observations
3. Results
3.1. Validation of C6.1 DT Retrievals
3.2. Validation of C6.1 DB Retrievals
3.3. Validation of C6.1 DT/DB Retrievals
3.4. Comparison of DT, DB and DT/DB Products with Ground-Observed Data in Each AOD Bin
3.5. Seasonal Differences of DT, DB and DT/DB Products
3.6. Adaptability of DT, DB and DT/DB Products over Different Land Cover Types
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere-Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Lolli, S.; Campbell, J.R.; Lewis, J.R.; Gu, Y.; Marquis, J.W.; Chew, B.N.; Liew, S.C.; Salinas, S.V.; Welton, E.J. Daytime Top-of-the-Atmosphere Cirrus Cloud Radiative Forcing Properties at Singapore. J. Appl. Meteorol. Clim. 2017, 56, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekas, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Penner, J.E. Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos. Chem. Phys. 2005, 5, 2935–2948. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; pp. 33–50. [Google Scholar]
- Lolli, S.; Alparone, L.; Garzelli, A.; Vivone, G. Haze Correction for Contrast-Based Multispectral Pansharpening. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 2255–2259. [Google Scholar] [CrossRef]
- He, Q.Q.; Zhang, M.; Huang, B.; Tong, X.L. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison. Atmos. Environ. 2017, 153, 150–162. [Google Scholar] [CrossRef]
- Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Oanh, N.T.K.; Upadhyaya, N.; Zhuang, Y.H.; Hao, Z.P.; Murthy, D.V.S.; Lestari, P.; Villarin, J.T.; Chengchua, K.; Co, H.X.; Dung, N.T.; et al. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos. Environ. 2006, 40, 3367–3380. [Google Scholar] [CrossRef]
- Huebert, B.J.; Bates, T.; Russell, P.B.; Shi, G.Y.; Kim, Y.J.; Kawamura, K.; Carmichael, G.; Nakajima, T. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Basart, S.; Perez, C.; Cuevas, E.; Baldasano, J.M.; Gobbi, G.P. Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations. Atmos. Chem. Phys. 2009, 9, 8265–8282. [Google Scholar] [CrossRef] [Green Version]
- Agacayak, T.; Kindap, T.; Unal, A.; Pozzoli, L.; Mallet, M.; Solmon, F. A case study for Saharan dust transport over Turkey via RegCM4.1 model. Atmos. Res. 2015, 153, 392–403. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Nichol, J.E.; Bilal, M. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens.-Basel 2016, 8, 328. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Holben, B.N.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Vidot, J.; Santer, R.; Aznay, O. Evaluation of the MERIS aerosol product over land with AERONET. Atmos. Chem. Phys. 2008, 8, 7603–7617. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.M.; Liu, H.Q.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.F.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Nichol, J.E. Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Tao, M.H.; Chen, L.F.; Wang, Z.F.; Tao, J.H.; Che, H.Z.; Wang, X.H.; Wang, Y. Comparison and evaluation of the MODIS Collection 6 aerosol data in China. J. Geophys. Res. Atmos. 2015, 120, 6992–7005. [Google Scholar] [CrossRef]
- Tian, X.P.; Liu, Q.; Li, X.H.; Wei, J. Validation and Comparison of MODIS C6.1 and C6 Aerosol Products over Beijing, China. Remote Sens.-Basel 2018, 10, 2021. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Schaap, M.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; de Leeuw, G.; Builtjes, P.J.H. Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 2008, 42, 2187–2197. [Google Scholar] [CrossRef]
- Li, D.; Qin, K.; Wu, L.X.; Xu, J.; Letu, H.S.; Zou, B.; He, Q.; Li, Y.F. Evaluation of JAXA Himawari-8-AHI Level-3 Aerosol Products over Eastern China. Atmosphere-Basel 2019, 10, 215. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Persp. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubanks, P.A. MODIS Atmosphere QA Plan for Collection 005; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2005; Volume 57.
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanre, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, Y.; Xiong, X.X.; Qu, J.J.; Che, H.Z. Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos. Environ. 2011, 45, 5970–5978. [Google Scholar] [CrossRef]
- Bilal, M.; Nazeer, M.; Nichol, J.E.; Bleiweiss, M.P.; Qiu, Z.F.; Jakel, E.; Campbell, J.R.; Atique, L.; Huang, X.L.; Lolli, S. A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sens.-Basel 2019, 11, 1344. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Mhawish, A.; Banerjee, T.; Broday, D.M.; Misra, A.; Tripathi, S.N. Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sens. Environ. 2017, 201, 297–313. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J.P. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
Region | Country | AERONET Site | Lat/Lon | Land Cover Type | Time Period | Average AOD | Average Surface Reflectance (SR) |
---|---|---|---|---|---|---|---|
Asia | China | Beijing (BJS) | 39.977/116.381 | Urban | 2001–2016 | 0.610 | 0.088 |
Beijing-CAMS (BJC) | 39.933/116.317 | Urban | 2012–2016 | 0.611 | 0.079 | ||
Taihu (THS) | 31.421/120.215 | Barren or Sparsely Vegetated | 2005–2012 | 0.732 | 0.124 | ||
Xianghe (XHS) | 39.754/116.962 | Cropland | 2001–2015 | 0.664 | 0.071 | ||
Xinglong (XLS) | 40.396/117.578 | Mixed Forest | 2006–2012 | 0.271 | 0.037 | ||
India | Gandhi_College (GCS) | 25.871/84.128 | Wetland | 2006–2015 | 0.623 | 0.085 | |
Kanpur (KPR) | 26.513/80.232 | Wetland | 2001–2015 | 0.610 | 0.080 | ||
Pakistan | Karachi (KRC) | 24.870/67.030 | Urban | 2006–2014 | 0.417 | 0.114 | |
Lahore (LHR) | 31.542/74.325 | Urban | 2007–2015 | 0.629 | 0.110 | ||
Middle East | United Arab Emirates | Dhabi (DHB) | 24.481/54.383 | Urban | 2003–2008 | 0.399 | 0.111 |
Hamim (HMM) | 22.967/54.300 | Barren or Sparsely Vegetated | 2004–2007 | 0.318 | 0.144 | ||
Masdar_Institute (MIS) | 24.442/54.617 | Barren or Sparsely Vegetated | 2012–2016 | 0.387 | 0.162 | ||
Mezaira (MZR) | 23.145/53.779 | Barren or Sparsely Vegetated | 2004–2016 | 0.329 | 0.124 | ||
Mussafa (MSF) | 24.372/54.467 | Barren or Sparsely Vegetated | 2004–2010 | 0.389 | 0.095 | ||
Bahrain | Bahrain (BRN) | 26.208/50.609 | Urban | 2000–2006 | 0.401 | 0.112 | |
Kuwait | Kuwait_University (KUS) | 29.325/47.971 | Urban | 2007–2010 | 0.585 | 0.148 | |
Northern Africa | Egypt | El_Farafra (EFS) | 27.058/27.990 | Barren or Sparsely Vegetated | 2014–2016 | 0.181 | 0.209 |
Cairo_EMA_2 (CES) | 30.081/31.290 | Urban | 2010–2014 | 0.355 | 0.089 | ||
Niger | DMN_Maine_Soroa (DMS) | 13.217/12.023 | Barren or Sparsely Vegetated | 2005–2010 | 0.493 | 0.112 | |
Zinder_Airport (ZAS) | 13.777/8.990 | Barren or Sparsely Vegetated | 2009–2016 | 0.536 | 0.101 | ||
Benin | Djougou (DJG) | 9.760/1.599 | Savannas | 2004–2007 | 0.706 | 0.074 | |
Mali | Agoufou (AGF) | 15.345/-1.479 | Barren or Sparsely Vegetated | 2003–2009 | 0.498 | 0.089 | |
Nigeria | Ilorin (ILR) | 8.320/4.340 | Savannas | 2000–2016 | 0.758 | 0.114 |
Region | Site | N | MR (%) | R | PBE (%) | PAE (%) | PWE (%) | RMSE | MAE | RMB | Equation of Linear Regression |
---|---|---|---|---|---|---|---|---|---|---|---|
Asia | BJS | 672 | 23.0 | 0.829 | 4.3 | 77.4 | 18.3 | 0.371 | 0.309 | 1.526 | y = 0.876x + 0.326 |
BJC | 174 | 24.0 | 0.685 | 7.5 | 78.7 | 13.8 | 0.432 | 0.357 | 1.505 | y = 0.637x + 0.442 | |
THS | 52 | 6.3 | 0.863 | 1.9 | 75.0 | 23.1 | 0.390 | 0.322 | 1.424 | y = 1.130x + 0.220 | |
XHS | 917 | 40.8 | 0.927 | 6.9 | 27.3 | 65.8 | 0.247 | 0.145 | 1.106 | y = 1.040x + 0.037 | |
XLS | 240 | 24.9 | 0.871 | 15.0 | 13.3 | 71.7 | 0.128 | 0.080 | 0.969 | y = 0.881x + 0.022 | |
GCS | 558 | 51.7 | 0.821 | 11.1 | 24.4 | 64.5 | 0.192 | 0.132 | 1.071 | y = 0.965x + 0.064 | |
KPR | 1245 | 48.3 | 0.809 | 3.2 | 42.8 | 54.0 | 0.239 | 0.163 | 1.212 | y = 1.040x + 0.099 | |
KRC | - | - | - | - | - | - | - | - | - | - | |
LHR | 676 | 57.0 | 0.798 | 4.0 | 65.4 | 30.6 | 0.315 | 0.248 | 1.389 | y = 1.140x + 0.140 | |
All | 4534 | 32.5 | 0.845 | 6.0 | 46.1 | 47.9 | 0.278 | 0.195 | 1.247 | y = 0.990x + 0.141 | |
Middle East | DHB | - | - | - | - | - | - | - | - | - | - |
HMM | - | - | - | - | - | - | - | - | - | - | |
MIS | - | - | - | - | - | - | - | - | - | - | |
MZR | - | - | - | - | - | - | - | - | - | - | |
MSF | - | - | - | - | - | - | - | - | - | - | |
BRN | - | - | - | - | - | - | - | - | - | - | |
KUS | - | - | - | - | - | - | - | - | - | - | |
All | - | - | - | - | - | - | - | - | - | - | |
Northern Africa | EFS | - | - | - | - | - | - | - | - | - | - |
CES | 94 | 8.3 | 0.673 | 4.2 | 39.4 | 56.4 | 0.189 | 0.133 | 1.242 | y = 0.906x + 0.123 | |
DMS | - | - | - | - | - | - | - | - | - | - | |
ZAS | - | - | - | - | - | - | - | - | - | - | |
DJG | 243 | 35.0 | 0.861 | 69.2 | 1.6 | 29.2 | 0.290 | 0.234 | 0.682 | y = 0.804x − 0.082 | |
AGF | - | - | - | - | - | - | - | - | - | - | |
ILR | 382 | 21.5 | 0.842 | 72.8 | 1.8 | 25.4 | 0.354 | 0.290 | 0.660 | y = 0.782x − 0.095 | |
All | 719 | 8.6 | 0.811 | 62.6 | 6.7 | 30.7 | 0.316 | 0.250 | 0.708 | y = 0.725x − 0.012 | |
All | 5253 | 19.0 | 0.804 | 13.7 | 40.7 | 45.6 | 0.284 | 0.202 | 1.158 | y = 0.915x + 0.138 |
Region | Site | N | MR (%) | R | PBE (%) | PAE (%) | PWE (%) | RMSE | MAE | RMB | Equation of Linear Regression |
---|---|---|---|---|---|---|---|---|---|---|---|
Asia | BJS | 2462 | 84.1 | 0.895 | 17.1 | 19.7 | 63.2 | 0.261 | 0.148 | 1.011 | y = 0.929x + 0.043 |
BJC | 532 | 73.4 | 0.864 | 17.1 | 22.7 | 60.2 | 0.303 | 0.169 | 1.051 | y = 0.972x + 0.039 | |
THS | 370 | 45.1 | 0.799 | 26.2 | 20.3 | 53.5 | 0.321 | 0.203 | 1.002 | y = 1.010x − 0.006 | |
XHS | 1878 | 83.5 | 0.911 | 8.7 | 36.6 | 54.7 | 0.281 | 0.173 | 1.133 | y = 0.986x + 0.088 | |
XLS | 562 | 58.4 | 0.796 | 20.4 | 13.9 | 65.7 | 0.169 | 0.098 | 0.933 | y = 0.798x + 0.034 | |
GCS | 842 | 78.0 | 0.740 | 22.4 | 22.8 | 54.8 | 0.290 | 0.188 | 1.039 | y = 1.060x − 0.012 | |
KPR | 1865 | 72.3 | 0.752 | 14.0 | 23.9 | 62.1 | 0.250 | 0.157 | 1.065 | y = 0.934x + 0.080 | |
KRC | 836 | 59.4 | 0.603 | 55.2 | 5.9 | 38.9 | 0.227 | 0.169 | 0.672 | y = 0.462x + 0.087 | |
LHR | 911 | 76.8 | 0.773 | 27.0 | 20.1 | 52.9 | 0.229 | 0.164 | 0.936 | y = 0.825x + 0.066 | |
All | 10258 | 73.6 | 0.862 | 19.9 | 22.6 | 57.5 | 0.261 | 0.161 | 1.020 | y = 0.958x + 0.034 | |
Middle East | DHB | 230 | 74.2 | 0.558 | 41.8 | 24.3 | 33.9 | 0.235 | 0.183 | 0.900 | y = 0.625x + 0.111 |
HMM | 581 | 87.5 | 0.765 | 16.0 | 16.5 | 67.5 | 0.137 | 0.094 | 1.012 | y = 0.859x + 0.048 | |
MIS | 670 | 70.5 | 0.506 | 34.6 | 28.2 | 37.2 | 0.238 | 0.178 | 0.969 | y = 0.542x + 0.170 | |
MZR | 1274 | 86.4 | 0.800 | 11.6 | 34.0 | 54.4 | 0.158 | 0.114 | 1.156 | y = 0.957x + 0.065 | |
MSF | 470 | 59.9 | 0.585 | 38.5 | 28.9 | 32.6 | 0.254 | 0.195 | 0.992 | y = 0.626x + 0.146 | |
BRN | 193 | 30.9 | 0.626 | 44.6 | 17.1 | 38.3 | 0.231 | 0.177 | 0.809 | y = 0.555x + 0.106 | |
KUS | 337 | 65.6 | 0.776 | 16.9 | 42.4 | 40.7 | 0.307 | 0.222 | 1.185 | y = 0.784x + 0.215 | |
All | 3755 | 70.6 | 0.702 | 23.8 | 28.9 | 47.3 | 0.210 | 0.150 | 1.047 | y = 0.769x + 0.104 | |
Northern Africa | EFS | 342 | 55.2 | 0.659 | 7.9 | 63.2 | 28.9 | 0.235 | 0.189 | 1.614 | y = 0.675x + 0.214 |
CES | 934 | 82.8 | 0.651 | 29.3 | 26.2 | 44.5 | 0.180 | 0.137 | 0.951 | y = 0.604x + 0.120 | |
DMS | 647 | 58.1 | 0.769 | 27.0 | 22.6 | 50.4 | 0.214 | 0.149 | 0.951 | y = 0.706x + 0.104 | |
ZAS | 604 | 40.0 | 0.887 | 19.5 | 27.0 | 53.5 | 0.241 | 0.156 | 1.076 | y = 1.070x + 0.004 | |
DJG | 395 | 56.8 | 0.839 | 40.8 | 9.6 | 49.6 | 0.257 | 0.185 | 0.846 | y = 0.807x + 0.027 | |
AGF | 1089 | 72.4 | 0.812 | 20.5 | 27.2 | 52.3 | 0.285 | 0.172 | 1.065 | y = 0.968x + 0.047 | |
ILR | 621 | 34.9 | 0.855 | 17.4 | 26.2 | 56.4 | 0.304 | 0.203 | 1.030 | y = 0.951x + 0.066 | |
All | 4632 | 55.5 | 0.837 | 23.4 | 27.4 | 49.2 | 0.248 | 0.166 | 1.021 | y = 0.903x + 0.058 | |
ALL | 18,645 | 67.5 | 0.847 | 21.6 | 25.0 | 53.4 | 0.248 | 0.160 | 1.025 | y = 0.931x + 0.047 |
Region | Site | N | MR (%) | R | PBE (%) | PAE (%) | PWE (%) | RMSE | MAE | RMB | Equation of Linear Regression |
---|---|---|---|---|---|---|---|---|---|---|---|
Asia | BJS | 1742 | 59.5 | 0.853 | 9.0 | 38.7 | 52.3 | 0.271 | 0.176 | 1.194 | y = 0.879x + 0.143 |
BJC | 347 | 47.9 | 0.800 | 7.8 | 50.1 | 42.1 | 0.303 | 0.213 | 1.294 | y = 0.879x + 0.175 | |
THS | 63 | 7.7 | 0.883 | 4.8 | 63.5 | 31.7 | 0.022 | 0.004 | 1.381 | y = 1.250x + 0.087 | |
XHS | 1418 | 63.1 | 0.917 | 5.9 | 33.8 | 60.3 | 0.259 | 0.154 | 1.153 | y = 1.050x + 0.056 | |
XLS | 314 | 32.6 | 0.879 | 16.9 | 11.8 | 71.3 | 0.121 | 0.077 | 0.945 | y = 0.889x + 0.013 | |
GCS | 684 | 63.3 | 0.768 | 14.6 | 23.7 | 61.7 | 0.208 | 0.141 | 1.043 | y = 0.913x + 0.078 | |
KPR | 1469 | 57.0 | 0.788 | 6.1 | 37.9 | 56.0 | 0.232 | 0.157 | 1.160 | y = 0.968x + 0.113 | |
KRC | 285 | 20.3 | 0.603 | 48.1 | 4.2 | 47.7 | 0.189 | 0.134 | 0.679 | y = 0.335x + 0.124 | |
LHR | 684 | 57.7 | 0.779 | 5.6 | 61.4 | 33.0 | 0.309 | 0.240 | 1.356 | y = 1.110x + 0.138 | |
All | 7006 | 50.3 | 0.856 | 9.8 | 36.5 | 53.7 | 0.254 | 0.167 | 1.164 | y = 0.980x + 0.094 | |
Middle East | DHB | - | - | - | - | - | - | - | - | - | - |
HMM | 542 | 81.6 | 0.814 | 17.2 | 12.7 | 70.1 | 0.113 | 0.083 | 0.956 | y = 0.832x + 0.039 | |
MIS | 30 | 3.2 | 0.521 | 36.7 | 20.0 | 43.3 | 0.167 | 0.137 | 0.885 | y = 0.687x + 0.072 | |
MZR | 1149 | 78.0 | 0.821 | 11.9 | 31.2 | 56.9 | 0.144 | 0.105 | 1.126 | y = 0.947x + 0.057 | |
MSF | - | - | - | - | - | - | - | - | - | - | |
BRN | - | - | - | - | - | - | - | - | - | - | |
KUS | 37 | 7.2 | 0.884 | 24.4 | 27.0 | 48.6 | 0.332 | 0.228 | 1.007 | y = 0.849x + 0.123 | |
All | 1758 | 33.0 | 0.834 | 14.2 | 25.2 | 60.6 | 0.142 | 0.101 | 1.066 | y = 0.906x + 0.052 | |
Northern Africa | EFS | 116 | 18.7 | 0.415 | 12.1 | 52.6 | 35.3 | 0.205 | 0.165 | 1.414 | y = 0.349x + 0.227 |
CES | 337 | 39.9 | 0.672 | 32.6 | 22.6 | 44.8 | 0.167 | 0.127 | 0.940 | y = 0.808x + 0.043 | |
DMS | 469 | 42.1 | 0.783 | 29.2 | 19.0 | 51.8 | 0.207 | 0.139 | 0.901 | y = 0.654x + 0.097 | |
ZAS | 442 | 29.3 | 0.910 | 20.3 | 22.9 | 56.8 | 0.413 | 0.137 | 1.040 | y = 1.080x − 0.019 | |
DJG | 267 | 38.4 | 0.872 | 63.7 | 2.6 | 33.7 | 0.278 | 0.221 | 0.710 | y = 0.800x − 0.061 | |
AGF | 760 | 50.5 | 0.841 | 23.3 | 20.1 | 56.6 | 0.228 | 0.138 | 0.961 | y = 0.859x + 0.044 | |
ILR | 382 | 21.5 | 0.842 | 72.8 | 1.8 | 25.4 | 0.354 | 0.290 | 0.660 | y = 0.782x − 0.095 | |
All | 2773 | 33.2 | 0.823 | 35.2 | 17.8 | 47.0 | 0.243 | 0.167 | 0.870 | y = 0.784x + 0.041 | |
ALL | 11,537 | 41.8 | 0.841 | 16.6 | 30.3 | 53.1 | 0.238 | 0.157 | 1.082 | y = 0.934x + 0.073 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Gao, Z. Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area. Atmosphere 2019, 10, 548. https://doi.org/10.3390/atmos10090548
Tian X, Gao Z. Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area. Atmosphere. 2019; 10(9):548. https://doi.org/10.3390/atmos10090548
Chicago/Turabian StyleTian, Xinpeng, and Zhiqiang Gao. 2019. "Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area" Atmosphere 10, no. 9: 548. https://doi.org/10.3390/atmos10090548
APA StyleTian, X., & Gao, Z. (2019). Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area. Atmosphere, 10(9), 548. https://doi.org/10.3390/atmos10090548