Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment
Abstract
:1. Introduction
1.1. Goals
1.2. Study Area
2. Data and Methods
2.1. Description of Data
2.2. Methods of Spatial Interpolation of Sub-Daily Precipitation
2.3. Susceptibility Assessment Model of Mass Movements in Small Mountainous Basins
2.4. Factors Used and Respective Weights
2.4.1. Slope
2.4.2. Drainage Network (Distance from the Drainage Network and Drainage Density)
2.4.3. Type and Occupation of the Soil
2.4.4. Precipitation
2.5. Criteria for Weighting and Validating the Model
3. Results
3.1. Evaluation of the Spatial Incidence of Intense Precipitation Events
3.1.1. Identification of Intense Precipitation Events
3.1.2. Main Features and Spatial Incidence of Intense Precipitation Events
3.2. Susceptibility Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaskovicova, L.; Bloschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78, ISSN 0022-1694. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Borga, M.; Morin, E.; Delrieu, G. Analysis of flash flood regimes in the NorthWestern and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.E. Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In Flood Geomorphology; Baker, V.R., Kochel, R.C., Patton, P.C., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 1988; pp. 113–122. [Google Scholar]
- Scott, K.M. Origins, behavior, and sedimentology of lahars and lahar-runout flows in the Toutle-Cowlitz River System. US Geol. Surv. Prof. Paper 1988, 1447-A, 1–74. [Google Scholar]
- Totschnig, R.; Fuchs, S. Mountain torrents: Quantifying vulnerability and assessing uncertainties. Eng. Geol. 2013, 155, 31–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santangelo, N.; Santo, A.; Di Crescenzo, G.; Foscari, G.; Liuzza, V.; Sciarrotta, S.; Scorpio, V. Flood susceptibility assessment in a highly urbanized alluvial fan: The case of Sala Consilina (Southern Italy). Nat. Hazards Earth Syst. Sci. 2011, 11, 2765–2780. [Google Scholar] [CrossRef] [Green Version]
- Scorpio, V.; Santangelo, N.; Santo, A. Multiscale map analysis in alluvial fan flood-prone areas. J. Maps 2016, 12, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Delrieu, G.; Nicol, J.; Yates, E.; Kirstetter, P.-E.; Creutin, J.-D.; Anquetin, S.; Obled, C.; Saulnier, G.-M.; Ducrocq, V.; Gaume, E.; et al. The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France. A first case study for the Cévennes-Vivarais Mediterranean hydro-meteorological observatory. J. Hydrometeorol. 2005, 6, 34–52. [Google Scholar] [CrossRef] [Green Version]
- Díez Herrero, A.; Laín-Huerta, L.; Llorente, I.M. Mapas de Peligrosidad por Avenidas e Inundaciones: Guía Metodológica Para su Elaboración; Instituto Geológico y Minero de Espanha: Madrid, Spain, 2008. [Google Scholar]
- Mathieu, J.; Provence-Alpes-Côte d’Azur; Direction régionale de l’environnement, and France; Direction générale de l’urbanisme, de l’habitat et de la construction. L’approche Hydrogéomorphologique en Milieux Méditerranéens Une Méthode de Détermination des Zones Inondables; Direction Régionale de l’Environment Provence-Alpes: Aix-en-Provence, France, 2007. [Google Scholar]
- Feldman, A. Hydrologic Modeling System HEC-HMS—Technical Reference Manual 4.0, U.S. Army Corps of Engineers. 2013. Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf (accessed on 17 December 2019).
- Ferreira, R.M.L.; Franca, M.J.; Leal, J.G.; Cardoso, A.H. Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics. Can. J. Civ. Eng. 2009, 36, 1605–1621. [Google Scholar] [CrossRef]
- Saharia, M.; Kirstetter, P.-E.; Vergara, H.; Gourley, J.J.; Hong, Y.; Giroud, M. Mapping flash flood severity in the United States. J. Hydrometeorol. 2017, 18, 397–411. [Google Scholar] [CrossRef]
- Smith, G. Flash flood potential: Determining the hydrologic response of FFMP basins to heavy rain by analyzing their physiographic characteristics. 2003. Available online: http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf (accessed on 17 December 2019).
- Wallingford, H. Flood Risks to People Phase 2, The Flood Risk to People Methodology; Technical Report FD2321/TR1; Environment Agency\Defra R&D: London, UK, 2005. [Google Scholar]
- Horton, P.; Jaboyedoff, M.; Rudaz, B.; Zimmermann, M. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat. Hazard Earth Syst. Sci. 2013, 13, 869–885. [Google Scholar] [CrossRef] [Green Version]
- Kourgialas, N.N.; Karatzas, G.P. Flood management and a GIS modelling method to assess flood-hazard areas—A case study. Hydrol. Sci. J. 2011, 56, 212–225. [Google Scholar] [CrossRef]
- Santos, P.P.; Reis, E. Assessment of stream flood susceptibility: A cross-analysis between model results and flood losses. Flood Risk Manag. 2017. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Hydrol. Process. 2010, 23, 2714–2727. [Google Scholar] [CrossRef]
- Mazzorana, B.; Comiti, F.; Scherer, C.; Fuchs, S. Developing consistent scenarios to assess flood hazards in mountain streams. J. Environ. Manag. 2012, 94, 112–124. [Google Scholar] [CrossRef]
- Mazzorana, B.; Fuchs, S. Fuzzy formative scenario analysis for woody material transport related risks in mountain torrents. Environ. Modell. Softw. 2010, 25, 1208–1224. [Google Scholar] [CrossRef]
- Borga, M.; Stoffel, M.; Marche, L.; Francesco, M.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Cristiano, E.; Veldhuis, M.; Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef] [Green Version]
- Berne, A.; Delrieu, G.; Creutin, J.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 2004, 299, 166–179. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.-P.; Gires, A.; Pina, R.D.; Reinoso-Rondinel, R.; Bruni, G.; Ichiba, A.; Gaitan, S.; Cristiano, E.; van Assel, J.; et al. Impact of Spatial and Temporal Resolution of Rainfall Inputs on Urban Hydrodynamic Modelling Outputs: A MultiCatchment Investigation. J. Hydrol. 2015, 531, 389–407. [Google Scholar] [CrossRef]
- Rafieeinasab, A.; Norouzi, A.; Kim, S.; Habibi, H.; Nazari, B.; Seo, D.-J.; Lee, H.; Cosgrove, B.; Cui, Z. Toward high-resolution flash flood prediction in large urban areas—Analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. J. Hydrol. 2015, 531, 370–388. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Smith, J.A.; Baeck, M.L.; Zhang, Y. Flash flooding in small urban watersheds: Storm event hydrological response. Water Resour. Res. 2016, 52, 4571–4589. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, M.; Trigo, R.M.; Pinto, J.G.; Lopes, S.; Lopes, A.; Ulbrich, S.; Magro, C. The 20 February 2010 Madeira flash-floods: Synoptic analysis and extreme rainfall assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Couto, F.T.; Salgado, R.; Costa, M.J. Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter. Nat. Hazards Earth Syst. Sci. 2012, 12, 2225–2240. [Google Scholar] [CrossRef]
- Gorricha, J.; Lobo, V.; Costa, A.C. Spatial characterization of extreme precipitation in Madeira island using geostatistical procedures and a 3D SOM. In Proceedings of the The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services, GEOProcessing, Valencia, Spain, 30 January–4 February 2012; Rückemann, C.-P., Resch, B., Eds.; IARIA: Wilmington, DE, USA, 2012; pp. 98–104. [Google Scholar]
- Dasari, H.P.; Salgado, R. Numerical modelling of heavy rainfall event over Madeira Island in Portugal: Sensitivity to different micro physical processes. Meteorol. Appl. 2013, 22, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Levizzani, V.; Laviola, S.; Cattani, E.; Costa, M.J. Extreme precipitation on the Island of Madeira on 20 February 2010 as seen by satellite passive microwave sounders. Eur. J. Remote Sens. 2013, 46, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Luna, T.; Rocha, A.; Carvalho, A.C.; Ferreira, J.A.; Sousa, J. Modelling the extreme precipitation event over Madeira Island on 20 February 2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2437–2452. [Google Scholar] [CrossRef] [Green Version]
- Lira, C.; Lousada, M.; Falcão, A.P.; Gonçalves, A.B.; Heleno, S.; Matias, M.; Pereira, M.J.; Pina, P.; Sousa, A.J.; Oliveira, R.; et al. The 20 February 2010 Madeira Island flash-floods: VHR satellite imagery processing in support of landslide inventory and sediment budget assessment. Nat. Hazards Earth Syst. Sci. 2013, 13, 709–719. [Google Scholar] [CrossRef]
- Creutin, J.D.; Borga, M.; Gruntfest, E.; Lutoff, C.; Zoccatelli, D.; Ruin, I. A space and time framework for analyzing human anticipation of flash floods. J. Hydrol. 2013, 482, 14–24. [Google Scholar] [CrossRef]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Collier, C. Flash flood forecasting: What are the limits of predictability? Q. J. R. Meteorol. Soc. 2007, 133, 3–23. [Google Scholar] [CrossRef]
- Liechti, K.; Panziera, L.; Germann, U.; Zappa, M. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci. 2013, 17, 3853–3869. [Google Scholar] [CrossRef] [Green Version]
- Quintero, F.; Sempere-Torres, D.; Berenguer, M.; Baltas, E. A scenario-incorporating analysis of the propagation of uncertainty to flash flood simulations. J. Hydrol. 2012, 460, 90–102. [Google Scholar] [CrossRef]
- Linacre, E. Climate Data and Resources: A Reference and Guide; Routledge: London, UK, 1992. [Google Scholar]
- TT-DEWCE WWO. Guidelines on the Definition and Monitoring of Extreme Weather and Climate Events: Draft Version; First Review by TT-Dewce; 2016. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Lopes, S.S. Clima e Ordenamento do Território no Funchal. Ph.D. Thesis, Institute of Geography and Spatial Planning, University of Lisabon, Lisbon, Portugal, 2015. [Google Scholar]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Saini, S.S.; Kaushik, S.P. Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana, India. Int. J. Geomat. Geosci. 2012, 3, 42–52. [Google Scholar]
- Reis, E. Análise de bacias hidrográficas, susceptibilidade à ocorrência de cheias e Sistemas de Informaçao Geográfica: Da definição do quadro conceptual até à proposta de um modelo de avaliaçao [Watershed analysis, flood susceptibility and Geographic Information, S.]. In Proceedings of the VIII Congresso da Geografia Portuguesa, Portuguese Association of Geographers, Lisbon, Portugal, 26–29 October 2011; pp. 1–6. [Google Scholar]
- Glade, T.; Crozier, M.J. A review of scale dependency in landslide hazard and risk analysis. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M.J., Eds.; Jonh Wiley & Sons, Ltd.: Chichester, UK, 2005; pp. 75–138. [Google Scholar]
- Popescu, M.E. A suggested method for reporting landslide causes. Bull. Assoc. Int. Géol. Ingénieur 1994, 50, 71–74. [Google Scholar] [CrossRef]
- Zêzere, J.L. Relatório do Programa de Perigosidade, Vulnerabilidade e Riscos no Território: Aplicação aos Movimentos de Vertente; Provas de Agregação; Universidade de Lisboa: Lisbon, Portugal, 2010. [Google Scholar]
- de Lima, J.L.M.P. (Ed.) Hidrologia Urbana: Conceitos Básicos; Série Cursos Técnicos Nº 1; Entidade Reguladora dos Serviços de Águas e Resíduos (ERSAR): Lisbon, Portugal, 2010. [Google Scholar]
- Hill, C.; Verjee, F.; Barrett, C. Flash Flood Early Warning System Reference Guide; University Corporation for Atmospheric: Boulder, CO, USA, 2010. [Google Scholar]
- Picarelli, L.; Oboni, F.; Evans, S.G.; Mostyn, G.; Fell, R. Hazard characterization and quantification. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor & Francis: London, UK, 2005; pp. 27–61. ISBN 04-1538-043-X. [Google Scholar]
- Hipólito, J.R.; Vaz, A.C. Hidrologia e Recursos Hídricos; IST Press: Lisbon, Portugal, 2011. [Google Scholar]
- Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C. Os Recursos Hídricos. In Geografia de Portugal; Medeiros, C.A., Ed.; O Ambiente Físico, Círculo de Leitores: Lisbon, Portugal, 2005; Volume I, pp. 388–415. ISBN 972-42-3519-X. [Google Scholar]
- Leal, M. As Cheias Rápidas em Bacias Hidrográficas da AML Norte: Factores Condicionantes e Desencadeantes; Núcleo de Investigação em Sistemas Litorais e Fluviais, SLIF 8, Centro de Estudos Geográficos, Universidade de Lisboa: Lisbon, Portugal, 2012; ISBN 978-972-636-231-9. [Google Scholar]
- McCuen, R. A Guide to Hydrologic Analysis Using SCS Methods; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Lencastre, A.; Franco, F.M. Lições de Hidrologia; Fundação da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa: Lisbon, Portugal, 2006. [Google Scholar]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publications: Oxford, UK, 2005. [Google Scholar]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology. In Water Science and Technology; Springer: Amsterdam, The Netherlands, 2003; Volume 42, ISBN 978-1-4020-1132-0. [Google Scholar]
- Zêzere, J.L.; Trigo, R.M.; Fragoso, M.; Oliveira, S.C.; Garcia, R.A.C. Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 2008, 8, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Van Den Eeckhaut, M.; Reichenbach, F.; Guzzetti, P.; Rossi, M.; Poesen, J. Combined landslide inventory and susceptibility assessment based on different mapping units: An example from the Flemish Ardennes, Belgium. Nat. Hazards Earth Syst. Sci. 2009, 9, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.; Oliveira, R.P.; Gonçalves, A.B.; Flor, A.F.; Sousa, A.J.; Coutinho, M.A.; Ferreira, R.L.; Pereira, M.J.; Pereira, M.C.; Lousada, M.S.; et al. Estudo de Avaliação de Risco de Aluviões na Ilha da Madeira; Final Report; Instituto Superior Técnico: Lisbon, Portugal, 2010; p. 1008. (In Portuguese) [Google Scholar]
- Couto, F.T.; Salgado, R.; Costa, M.J.; Prior, V. Precipitation in the Madeira Island over a 10-year period and the meridional water vapour transport during the winter seasons. Int. J. Climatol. 2015, 35, 3748–3759. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.T.; Chiang, S.H.; Lei, F. Analysing the relationship between typhoon triggered landslides and critical rainfall conditions. Earth Surface Process. Landf. 2008, 33, 1261–1271. [Google Scholar] [CrossRef]
- MacLeod, A. Coupling Meteorological Data With Hydrologic and Slope Stability Models to Constrain Controls on Shallow Landsliding. M.S. Thesis, University of Oregon, Eugene, OR, USA, 2006. [Google Scholar]
- Minder, R.J.; Roe, G.H.; Montgomery, D.R. Spatial patterns of rainfall and shallow landslide susceptibility. Water Resour. Res. 2009, 45, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Couto, F.T.; Ducrocq, V.; Salgado, R.; Costa, M.J. Numerical simulations of significant orographic precipitation in Madeira island. Atmos. Res. 2016, 169, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Ward, R. Floods: Physical Processes and Human Impacts; John Wiley and Sons: Chichester, UK, 1998. [Google Scholar]
- Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser July Sept. 2004, 3235, 569. [Google Scholar]
- Sanchez-Moreno, J.F.; Mannaerts, C.M.; Jetten, V. Influence of topography on rainfall variability in Santiago Island, Cape Verde. Int. J. Climatol. 2013. [Google Scholar] [CrossRef]
- Kieffer-Weisse, A.; Bois, P. A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: The use of daily information. Hydrol. Sci. J. 2002, 47, 739–752. [Google Scholar] [CrossRef]
Code | Designation | Altitude (m) |
---|---|---|
1 | Seixal | 70 |
2 | S. Vicente | 120 |
3 | Ponta do Sol | 130 |
4 | Lombo dos Palheiros | 212 |
5 | São Gonçalo | 220 |
6 | São Martinho | 260 |
7 | Achada do Til | 300 |
8 | Massapez | 300 |
9 | Trapiche | 590 |
10 | Fajã Nogueira | 629 |
11 | Prazeres | 632 |
12 | Fajã Ovelha | 635 |
13 | Fajã do Penedo | 637 |
14 | Camacha | 675 |
15 | Santa do Porto Moniz | 675 |
16 | Pinheiro Fora | 750 |
17 | Curral das Freiras | 800 |
18 | Casa Velha | 880 |
19 | Pico das Pedras | 920 |
20 | Pico Verde | 1020 |
21 | Trompica | 1188 |
22 | Parque Ecológico do Funchal | 1300 |
23 | Pico da Urze | 1365 |
24 | Estanquinhos | 1590 |
25 | Areeiro | 1590 |
26 | Machico | 170 |
27 | Meia Serra | 1100 |
28 | ETA Alegria | 611 |
29 | Encumeada | 854 |
30 | Bica da Cana | 1585 |
31 | Cova Grande | 1340 |
32 | Ovil | 1014 |
33 | Fajã Rodrigues | 575 |
34 | Fonte do Bispo | 1245 |
35 | Santo Serra, Lamaceiros | 784 |
36 | Santo da Serra, Quinta | 660 |
37 | Achada da Madeira | 521 |
38 | Chão das Feiteiras | 1180 |
39 | Chão dos Louros | 900 |
40 | Curral das Freiras ETA | 743 |
41 | Poiso, PO Florestal | 1360 |
42 | Ribeira do Alecrim | 1293 |
43 | Funchal/Obs. | 58 |
44 | Lugar de Baixo | 15 |
45 | Ponta do Pargo | 312 |
46 | São Jorge | 185 |
47 | Funchal/Lido | 25 |
Meteorological Data and Pluviometric Stations (PS) | Goal |
---|---|
Data referring to the period 2004/2005 to 2010/2011: of the following PS: Areeiro, Curral das Freiras, Trompica, Trapiche, PEF, LREC, São Gonçalo, Funchal/Obs. e Camacha. | Spatial representation of the 95th percentile of daily Precipitation. |
Annual maximum precipitation series with a duration of 1 day (starting at 9 a.m.) and 2 days in the Areeiro PS (1961/62 to 1993/94). | Estimate the return Period. |
Precipitations of daily and subdaily duration, referring to a set of PS located on the south side of the Island. | Analysis of the rainy episodes occurring from 2009 to 2011. |
Climatic series of daily precipitation of the Areeiro PS (1961–2010) and Funchal/Obs. (1949–2010). | Monthly distribution of the frequency of days with precipitation equal to or greater than the 95th percentile. |
Climatic series of daily precipitation of Areeiro PS: 1961/62 to 1993/94. | Analysis of the frequency of intense precipitation days, based on the criterion of precipitation in 24 h > 100 mm. |
Series of hourly precipitation data, referring to the period 1980–2010 (31 years) in Funchal/Observatory PS and in the period 2002–2010 (9 years), in the Areeiro PS. | Analysis of the frequency of intense precipitation days, based on the criterion of precipitation in 6 h > 30 mm. |
Variables | Number of Classes | Variables Classes | Weight |
---|---|---|---|
Slope | 5 | 0–10° | 1 |
10–15° | 2 | ||
15–20° | 3 | ||
20–25° | 4 | ||
>25° | 5 | ||
Distance from the streamline | 3 | >50 m | 1 |
20–50 m | 4 | ||
<20 m | 5 | ||
Drainage density | 4 | 0–1.6 km/km2 | 4 |
1.6–3.6 km/km2 | 3 | ||
3.6–5.5 km/km2 | 2 | ||
5.5–13.7 km/km2 | 1 | ||
Intensity of precipitation | 5 | Very low | 1 |
(see Figure 2) | Low | 2 | |
Medium | 3 | ||
High | 4 | ||
Very high | 5 | ||
Type and occupation of the soil | 4 | CN < 61 | 1 |
CN >= 62 e <= 80 | 2 | ||
Runoff Curve Number (CN) | CN >= 81 e <= 94 | 3 | |
CN >= 95 | 4 |
Description of Land Use | Hydrologic Soil Group | |||
---|---|---|---|---|
A | B | C | D | |
Urban/built areas | 100 | |||
Industry and commercial areas | 89 | 92 | 94 | 95 |
Agricultural areas | 62 | 71 | 78 | 81 |
Uncultivated land | 39 | 61 | 74 | 80 |
Forests | 33 | 57 | 71 | 78 |
Maximum Hourly Precipitation (mm) | Intensity Level | Maximum Precipitation at 12 h (mm) | Intensity Level | 95 Percentile of Daily Precipitation (mm) | Intensity Level |
---|---|---|---|---|---|
0–10 | 1 | 0–60 | 1 | 30–40 | 1 |
10–20 | 2 | 60–90 | 2 | 40–50 | 2 |
20–30 | 3 | 90–120 | 3 | 50–60 | 3 |
30–40 | 4 | 120–150 | 4 | 60–70 | 4 |
>40 | 5 | >150 | 5 | >70 | 5 |
Variables | Importance of the Factor | Factor Weight | Standardisation |
---|---|---|---|
Slope | 1 | 5 | 0.278 |
Distance from the streamline | 3 | 3 | 0.167 |
Type and occupation of the soil | 2 | 4 | 0.222 |
Drainage density | 4 | 2 | 0.111 |
Intensity of precipitation | 2 | 4 | 0.222 |
Sum | 17 | 1 |
Date | Municipality | Streams | Number of Deaths | Precipitation at Areeiro PS | |||
---|---|---|---|---|---|---|---|
24 h (mm) | T (years) | 48 h (mm) | T (years) | ||||
14 and 15 October 1945 | Calheta Funchal | Madalena Mar stream Funchal streams | --- | 197 | 4 | 204 | 1 |
3 November 1956 | Machico, Santa Cruz | Machico stream Santa Cruz stream | 6 | 104.5 | 1 | 111.3 | 1 |
5 and 6 January 1963 | Ribeira Brava | Ribeira Brava stream | 5 | 156.7 | 2 | 269.4 | 2 |
9 January 1970 | Ribeira Brava | Ribeira Brava stream | 4 | 90.9 | 1 | 142.2 | 1 |
21 September 1972 | Funchal | São João stream | 3 | 183.2 | 3 | 260.3 | 2 |
20 December 1977 | Funchal | ----- | 1 | 148 | 1 | 274.8 | 2 |
23 and 24 January 1979 | Calheta Ponta do Sol Ribeira Brava Machico | Calheta stream Ribeira Brava stream Machico stream | 14 | 186 | 3 | 294.5 | 3 |
March 2 and 3, 1984 | Funchal Câmara de Lobos | Socorridos stream | 1 | 185.8 | 3 | 400.8 | 63 |
29 October 1993 | Funchal, Santa Cruz e Machico | São João, Santa Luzia and João Gomes stream (Funchal); Santa Cruz stream; Machico stream | 9 | s/d | --- | s/d | --- |
19 and 20 October 1997 | Câmara de Lobos e Funchal | Socorridos stream Santa Luzia stream | --- | 309.2 | 813 | 320.4 | 4 |
4 and 5 March 2001 | Câmara de Lobos | Socorridos stream | --- | 277 | 109 | 506 | >1000 |
20 February 2010 | Calheta Ponta do Sol Ribeira Brava Funchal e Santa Cruz | Madalena do Mar stream; Ponta do Sol stream; São João, Santa Luzia and João Gomes streams (Funchal); Santa Cruz stream | 48 | 307.7 | 735 | 407.2 | 95 |
21 October 2010 | Funchal | São João stream | --- | 147 | 1 | 150.5 | 1 |
25 and 26 March 2010 | Funchal | ----- | --- | 185.2 | 3 | 190.7 | 1 |
20 December 2010 | Câmara de Lobos e Funchal | Socorridos stream | --- | 165 | 2 | 204.2 | 1 |
25 January 2011 | Funchal | Funchal streams | --- | 321 | >1000 | 377.7 | 21 |
Trompica | Curral Freiras | Trapiche | São Martinho | Areeiro | Parque Ecológico | São Gonçalo | Camacha | ||
---|---|---|---|---|---|---|---|---|---|
2 February 2010 | DP | 179.4 | 390 | 144.4 | 95.4 | 184.7 | 266.6 | 208 | 248.4 |
D | 18 h 50 min | +24 h | 20 h 00 | 16 h 00 | 22 h 00 | +24 h | 15 h 50 | 17 h 50 | |
MHP | 28.4 | 46.6 | 27.6 | 20.4 | 24.6 | 29 | 42.4 | 33.8 | |
20 February 2010 | DP | 240.8 | 153.2 | 340.2 | 139.6 | 333.8 | 332.4 | 187.2 | 351 |
D | 13 h 30 | 13 h 50 | 15 h 40 | 14 h 00 | 15 h 40 | 17 h 00 | 13 h 30 | 14 h 00 | |
MHP | 60.4 | 48.4 | 98.6 | 42.2 | 64.6 | 52.8 | 72.6 | 114.4 | |
21 October 2010 | DP | 167.6 | 71.8 | 197.6 | 120.8 | 157.2 | 144.2 | 112 | 177.6 |
D | 11 h 50 | 7 h 00 | 10 h 50 | 9 h 00 | 11 h 50 | 10 h 00 | 13 h 00 | 15 h 00 | |
MHP | 41 | 35.8 | 69.8 | 38.4 | 31.5 | 31.2 | 40.2 | 63.2 | |
25 November 2010 | DP | 155.8 | 43.2 | 177.4 | 129.8 | 160.5 | 166.4 | 156.4 | 193.2 |
D | 15 h 40 | 6 h 20 | 15 h 20 | 17 h 00 | 17 h 50 | 20 h 00 | 12 h 00 | 13 h 00 | |
MHP | 26.6 | 18.2 | 38.4 | 37.8 | 27.9 | 42.2 | 41 | 57.2 | |
20 December 2010 | DP | 63 | ---- | 115.4 | 41.4 | 165 | 121.6 | 25.4 | 66.4 |
D | 12 h 00 | ---- | 6 h 10 | 5 h 00 | 14 h 20 | 9 h 00 | 4 h 30 | 6 h 40 | |
MHP | 5.2 | ---- | 33.6 | 17.4 | 30.1 | 29.6 | 7.8 | 17 | |
25 January 2011 | DP | 181.4 | ---- | 203.8 | 65.4 | 344.1 | 253.2 | 157 | 207.4 |
D | 17 h 10 | ---- | 15 h 30 | 15 h 00 | 15 h 10 | 21 h 00 | 14 h 50 | 15 h 50 | |
MHP | 23 | ---- | 24 | 9.4 | 37.3 | 25.6 | 18.2 | 25.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, S.; Fragoso, M.; Lopes, A. Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere 2020, 11, 104. https://doi.org/10.3390/atmos11010104
Lopes S, Fragoso M, Lopes A. Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere. 2020; 11(1):104. https://doi.org/10.3390/atmos11010104
Chicago/Turabian StyleLopes, Sérgio, Marcelo Fragoso, and António Lopes. 2020. "Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment" Atmosphere 11, no. 1: 104. https://doi.org/10.3390/atmos11010104
APA StyleLopes, S., Fragoso, M., & Lopes, A. (2020). Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere, 11(1), 104. https://doi.org/10.3390/atmos11010104