Effects of Drought-Flood Abrupt Alternation on the Growth of Summer Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Soil Moisture Measurement
2.3. Roots Measurement and Analysis
2.4. Soil Microorganism Sampling and Analysis
2.5. Leaf Area Index Measurement and Analysis
2.6. Yield Measurement and Analysis
2.7. Grain Quality Measurement and Analysis
2.8. Statistical and Data Analysis
3. Results
3.1. Soil Moisture Content
3.2. Root Systems
3.3. Soil Bacterial Communities
3.4. Leaf Area Index
3.5. Yield
3.6. Grain Quality
3.7. Correlation Analysis
4. Discussion
4.1. DFAA Effects on the Growth of Summer Maize
4.2. Mechanism of DFAA Effects on the Growth of Summer Maize
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CK | control system |
DFAA | drought–flood abrupt alternation |
DFAA1 | light drought–light flood treatment in the seeding-jointing stage |
DFAA2 | moderate drought–light flood treatment in the seeding-jointing stage |
DFAA3 | light drought–light flood treatment in the tasseling-grain filling stage |
DFAA4 | moderate drought–light flood treatment in the tasseling-grain filling stage |
LAI | leaf area index |
SJS | seeding-jointing stage (i.e., seeding stage and jointing stage) |
TGS | tasseling-grain filling stage (i.e., tasseling stage and grain filling stage) |
References
- Elleder, L. Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic. Glob. Planet. Chang. 2010, 70, 117–124. [Google Scholar] [CrossRef]
- Meng, J.; Yao, P.; Bianchi, T.S.; Li, D.; Zhao, B.; Xu, B.; Yu, Z. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin. Sci. Total Environ. 2015, 517, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.M.G.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Wu, Z.; He, J.; Li, J. The Summer Drought-Flood Coexistence in the Middle and Lower Reaches of the Yangtze River and Analysis of its Air-Sea Background Feathers in Anomalous Years. J. Atmos. Sci. 2006, 30, 570–577. [Google Scholar]
- Egamberdiyeva, D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 2007, 36, 184–189. [Google Scholar] [CrossRef]
- Sposito, G. Green Water and Global Food Security. Vadose Zone J. 2013, 12, 4. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R. Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pak. J. Biol. Sci. 2007, 10, 4022–4028. [Google Scholar]
- Zhou, X.; Zhang, Y.; Ji, X.; Downing, A.; Serpe, M. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environ. Exp. Bot. 2011, 74, 1–8. [Google Scholar] [CrossRef]
- Zinselmeier, C.; Westgate, M.E.; Schussler, J.R.; Jones, R.J. Low Water Potential Disrupts Carbohydrate Metabolism in Maize (Zea mays L.) Ovaries. Plant Physiol. 2016, 107, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.; Cooper, M.; Habben, J.E.; Edmeades, G.O.; Schussler, J.R. Improving drought tolerance in maize: A view from industry. Field Crop. Res. 2004, 90, 19–34. [Google Scholar] [CrossRef]
- Suraj, B. Effect of water logging on maize. Indian J. Agric. Res. 1977, 11, 147–151. [Google Scholar]
- Ahmed, M.A.; Zarebanadkouki, M.; Kaestner, A.; Carminati, A. Measurements of water uptake of maize roots: The key function of lateral roots. Plant Soil 2016, 398, 59–77. [Google Scholar] [CrossRef]
- Lynch, J.P.; Chimungu, J.G.; Brown, K.M. Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. J. Exp. Bot. 2014, 65, 6155–6166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasovski, E.; Peterson, C.A. The effects of drought and subsequent rehydration on the structure and vitality of Zea mays seedling roots. Can. J. Bot. 2007, 69, 1170–1178. [Google Scholar] [CrossRef]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Katerji, N.; Van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M. Comparison of corn yield response to plant water stress caused by salinity and by drought. Agric. Water Manag. 2004, 65, 95–101. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, L.M.; Stewart, D.W. Indicators of Water Stress in Corn (Zea mays L.). Can. J. Plant Sci. 1984, 64, 537–546. [Google Scholar] [CrossRef]
- Shumway, C.R.; Cothren, J.T.; Serna-Saldivar, S.O.; Rooney, L.W. Planting Date and Moisture Effects on Yield, Quality, and Alkaline-Processing Characteristics of Food-Grade Maize. Crop Sci. 1992, 32, 1265. [Google Scholar] [CrossRef]
- Ma, X.; Cui, Z.; Chen, J.; Xiao, C.L.; Zhang, L.J.; Wang, Q.X. Effect of Drought Stress during Seedling Stage on the Content of Grain Crude Protein, and Lysine of Maize. J. Maize Sci. 2006, 14, 71–74. [Google Scholar]
- Wang, P.W.; Dai, J.Y.; Wei, Y.P. The effects of drought stress on yield and quality of maize. J. Maize Sci. 1999, 7, 102–106. [Google Scholar]
- Steudle, E. Water uptake by plant roots: An integration of views. Plant Soil 2000, 226, 45–56. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Singh, P.; Singh, N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chem. 2008, 108, 130–139. [Google Scholar] [CrossRef]
- Wang, X.L.; Qin, R.R.; Sun, R.H.; Hou, X.G.; Qi, L.; Shi, J. Effects of plant population density and root-induced cytokinin on the corn compensatory growth during post-drought rewatering. PLoS ONE 2018, 13, e0198878. [Google Scholar] [CrossRef]
- Huang, R. Research on Evolution and Countermeasures of Droughts-Floods Abrupt Alternation Events in Huaihe River Basin. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2015. [Google Scholar]
- Bi, W.; Weng, B.; Yuan, Z.; Yang, Y.; Xu, T.; Yan, D.; Ma, J. Evolution of Drought−Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2019, 16, 691. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.H. Research on Drought Risk Mitigation Based on Water Resources System: Taking Daqing River Basin for an Example. Master’s Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2014. [Google Scholar]
- Lu, R.K. Analysis Methods of Soil Agricultural Chemistry, 1st ed.; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shao, M.; Jia, X.; Wei, X. Changes in soil physical and chemical properties after short drought stress in semi-humid forests. Geoderma 2019, 338, 170–177. [Google Scholar] [CrossRef]
- Siatyer, R.O. Plant-Water Relationships; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Romdhane, L.; Awad, Y.M.; Radhouane, L.; Dal Cortivo, C.; Barion, G.; Panozzo, A.; Vamerali, T. Wood biochar produces different rates of root growth and transpiration in two maize hybrids (Zea mays L.) under drought stress. Arch. Agron. Soil Sci. 2019, 65, 846–866. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.B.; Ryan, M.H.; Renton, M.; Lambers, H. Plant Responses to Limited Moisture and Phosphorus Availability: A Meta-Analysis. In Advances in Agronomy, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Li, Y.; Yao, N.; Tang, D.; Chau, H.W.; Feng, H. Soil water repellency decreases summer maize growth. Agric. For. Meteorol. 2019, 266, 1–11. [Google Scholar] [CrossRef]
- Eszter, N.; Lajos, H. Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy 2019, 9, 447. [Google Scholar]
- Nemesk’eri, E.; Molnár, K.; Rácz, C.; Dobos, A.C.; Helyes, L. Effect of Water Supply on Spectral Traits and Their Relationship with the Productivity of Sweet Corns. Agronomy 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Suriyagoda, L.D.B.; Ryan, M.H.; Renton, M.; Lambers, H. Above- and below-ground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability. Plant Soil 2011, 348, 281–297. [Google Scholar] [CrossRef]
- Li, X.; Rui, J.; Xiong, J.; Li, J.; He, Z.; Zhou, J.; Yannarell, A.C.; Mackie, R.I. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 2014, 9, e112609. [Google Scholar] [CrossRef]
- Cavaglieri, L.; Orlando, J.; Etcheverry, M. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol. Res. 2009, 164, 391–399. [Google Scholar] [CrossRef]
- Wen, X.Y.; Dubinsky, E.; Yao, W.; Rong, Y.; Fu, C. Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere. J. Integr. Agric. 2016, 15, 1892–1902. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, T.R.; Bennett, J.M.; Muchow, R.C. Relative Sensitivity of Grain Yield and Biomass Accumulation to Drought in Field-Grown Maize. Crop Sci. 1990, 30, 690. [Google Scholar] [CrossRef]
- Rohman, M.M.; Islam, M.R.; Naznin, T.; Omy, S.H.; Hasanuzzaman, M. Maize Production under Salinity and Drought Conditions: Oxidative Stress Regulation by Antioxidant Defense and Glyoxalase Systems. In Plant Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- NeSmith, D.S.; Ritchie, J.T. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crop. Res. 1992, 28, 251–256. [Google Scholar] [CrossRef]
- Zhang, Y.J. Effect of Earlier-Stage Drought on Yield and Quality of Maize. Master’s Thesis, Northwest A & F University, Yanglin, China, 2007. [Google Scholar]
- Chaudhary, S.; Shankar, A.; Singh, A.; Prasad, V. Usefulness of Penicillium in Enhancing Plants Resistance to Abiotic Stresses. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier B.V.: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Shao, G.Q. Study on the Coupling Effects of Controlled Release Urea and Water on Nitrogen and Water Utilization, Yield and Quality of Maize. Master’s Thesis, Shandong Agricultural University, Taian, China, 2008. [Google Scholar]
- Li, F.; Wei, C.; Zhang, F.; Zhang, J.; Nong, M.; Kang, S. Water-use efficiency and physiological responses of maize under partial root-zone irrigation. Agric. Water Manag. 2010, 97, 1156–1164. [Google Scholar] [CrossRef]
- Li, S.M.; Dong, X.W.; Chen, J.H. Effect of different target water content in soil on photosynthetic property and yield of summer-sowing corn. Acta Agric. Boreali Sin. 1994, 14, 55–59. [Google Scholar]
- Li, L.J.; Gu, W.R.; Meng, Y.; Wang, Y.L.; Wei, S. Physiological and biochemical mechanism of spermidine improving drought resistance in maize seedlings under drought stress. J. Appl. Ecol. 2018, 29, 554–564. [Google Scholar]
- Wang, P.H. Effect of Meteorological Conditions on Maize Yield and Quality. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017. [Google Scholar]
- Kniep, K.R.; Mason, S.C. Lysine and Protein Content of Normal and Opaque-2 Maize Grain as Influenced by Irrigation and Nitrogen. Crop Sci. 1991, 31, 177. [Google Scholar] [CrossRef]
- Oktem, A. Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agric. Water Manag. 2008, 95, 1003–1010. [Google Scholar] [CrossRef]
- Cai, X.M. Effects of Water Stress on Grain Yield and Starch Physicochemical Properties of Waxy Maize. Master’s Thesis, Yangzhou University, Yangzhou, China, 2016. [Google Scholar]
- Ren, B.Z. Effects of Waterlogging on Grain Yield, Quality and Physiological Characteristics of Summer Maize. Master’s Thesis, Shandong Agricultural University, Taian, China, 2014. [Google Scholar]
Treatment | Drought Set | Flood Set | ||||
---|---|---|---|---|---|---|
Soil Moisture (%) | Drought Duration (Days) | Drought Level | Rainfall (mm) | Rainfall Date | Flood Level | |
DFAA1 | 18 | 25 | light | 100 | 21 July | light |
DFAA2 | 15 | 31 | moderate | 100 | 27 July | light |
DFAA3 | 18 | 26 | light | 100 | 6 September | light |
DFAA4 | 15 | 31 | moderate | 100 | 11 September | light |
CK | - | - | - | 84.5 | 13 August | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, W.; Wang, M.; Weng, B.; Yan, D.; Yang, Y.; Wang, J. Effects of Drought-Flood Abrupt Alternation on the Growth of Summer Maize. Atmosphere 2020, 11, 21. https://doi.org/10.3390/atmos11010021
Bi W, Wang M, Weng B, Yan D, Yang Y, Wang J. Effects of Drought-Flood Abrupt Alternation on the Growth of Summer Maize. Atmosphere. 2020; 11(1):21. https://doi.org/10.3390/atmos11010021
Chicago/Turabian StyleBi, Wuxia, Mengke Wang, Baisha Weng, Denghua Yan, Yuheng Yang, and Jinjie Wang. 2020. "Effects of Drought-Flood Abrupt Alternation on the Growth of Summer Maize" Atmosphere 11, no. 1: 21. https://doi.org/10.3390/atmos11010021
APA StyleBi, W., Wang, M., Weng, B., Yan, D., Yang, Y., & Wang, J. (2020). Effects of Drought-Flood Abrupt Alternation on the Growth of Summer Maize. Atmosphere, 11(1), 21. https://doi.org/10.3390/atmos11010021