Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Residential Indoor Environment Study Sites in Jordan
2.2. Indoor Aerosol Measurements and Experimental Design
2.2.1. Measurement Campaign
2.2.2. Aerosol Instrumentation
2.3. Processing of Size-Fractionated Aerosol Concentration Data
- 0.01–0.02 µm via the difference between the CPC 3007 and the P-Trak.
- 0.02–0.3 µm via the difference between the P-Trak and the first two channels of the AeroTrak.
- 0.3–0.5 µm, 0.5–1 µm, 1–2.5 µm, 2.5–5 µm, 5–10 µm, and 10–25 µm via the AeroTrak.
3. Results
3.1. Comparisons between Different Aerosol Instruments—Technical Notes
3.2. Overview of Indoor Particle Concentrations in Jordanian Dwellings
3.2.1. Indoor Particle Concentrations during the Winter Season
3.2.2. Indoor Particle Concentrations: Summer Versus Winter
3.3. Indoor Particle Number and Mass Size Distributions in Jordanian Dwellings
3.3.1. Indoor Particle Size Distributions in the Absence of Indoor Activities
3.3.2. Overall Mean Indoor Particle Number and Mass Size Distributions
3.3.3. The Impact of Indoor Activities on Indoor Particle Size Distributions and Concentrations
Cooking Activities without Combustion Processes
Cooking Activities in the Absence of Combustion Heating Processes
Concurrent Cooking Activities and Combustion Heating Processes
Indoor Smoking of Shisha and Tobacco
3.4. Concentrations of Selected Gaseous Pollutants in Jordanian Dwellings
3.5. Indoor Versus Outdoor Particle Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua=1 (accessed on 3 December 2019).
- World Health Organization (WHO). Household Air Pollution and Health. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 3 December 2019).
- Health Effects Institute (HEI). State of Global Air. In Special Report; Health Effects Institute: Boston, MA, USA, 2017. [Google Scholar]
- World Health Organization (WHO). The Right to Healthy Indoor Air. 2000. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/the-right-to-healthy-indoor-air (accessed on 3 December 2019).
- Odeh, I.; Hussein, T. Activity pattern of urban adult students in an Eastern Mediterranean Society. Int. J. Environ. Res. Public Health 2016, 13, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, T.; Paasonen, P.; Kulmala, M. Activity pattern of a selected group of school occupants and their family members in Helsinki-Finland. Sci. Total Environ. 2012, 425, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Schwerizer, C.; Edwards, R.; Bayer-Oglesby, L.; Gauderman, W.; Ilacqua, V.; Jantunen, M.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hem, S.C.; Engelmann, W.H. The national human activity pattern survey NHAPS: A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCurdy, T.; Glen, G.; Smith, L.; Lakkadi, Y. The National Exposure Research Laboratory’s Consolidated Human Activity Database. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 566–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koivisto, A.J.; Kling, K.I.; Hänninen, O.; Jayjock, M.; Löndahl, J.; Wierzbicka, A.; Fonseca, A.S.; Uhrbrand, K.; Boor, B.E.; Jiménez, A.S.; et al. Source specific exposure and risk assessment for indoor aerosols. Sci. Total Environ. 2019, 668, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Streets, D.G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res. 2009, 114, D00D18. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Francisco, C.; Dora, C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM)—A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Abadie, M.O.; Blondeau, P. PANDORA database: A compilation of indoor air pollutant emissions. HVAC&R Res. 2011, 17, 602–613. [Google Scholar]
- Boor, B.E.; Spilak, M.P.; Laverge, J.; Novoselac, A.; Xu, Y. Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Build. Environ. 2017, 125, 528–555. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Hussein, T.; Wierzbicka, A.; Löndahl, J.; Lazaridis, M.; Hänninen, O. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose. Atmos. Environ. 2015, 106, 402–411. [Google Scholar] [CrossRef]
- Koivisto, J.; Hussein, T.; Niemelä, R.; Tuomi, T.; Hämeri, K. Impact of particle emissions of new laser printers on a modeled office room. Atmos. Environ. 2010, 44, 2140–2146. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lo, P.-Y.; Wu, H.-D.; Chang, C.; Wang, L.-C. Association between indoor air pollution and respiratory disease in companion dogs and cats. J. Vet. Intern. Med. 2018, 32, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Pasanen, P.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morawska, L.; He, C.; Johnson, G.; Jayaratne, R.; Salthammer, T.; Wang, H.; Uhde, E.; Bostrom, T.; Modini, R.; Ayoko, G.; et al. An Investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ. Sci. Technol. 2009, 43, 1015–1022. [Google Scholar] [CrossRef]
- Sangiorgi, G.; Ferrero, L.; Ferrini, B.S.; Lo Porto, C.; Perrone, M.G.; Zangrando, R.; Gambaro, A.; Lazzati, Z.; Bolzacchini, E. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos. Environ. 2013, 65, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Wensing, M.; Schripp, T.; Uhde, E.; Salthammer, T. Ultra-fine particles release from hardcopy devices: Sources, real-room measurements and efficiency of filter accessories. Sci. Total Environ. 2008, 407, 418–427. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Taplin, L. Particle emission characteristics of office printers. Environ. Sci. Technol. 2007, 41, 6039–6045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Cheng, T.; Chen, J. Polycyclic aromatic hydrocarbons in dust from computers: One possible indoor source of human exposure. Atmos. Environ. 2006, 40, 6956–6965. [Google Scholar] [CrossRef]
- Afshari, A.; Matson, U.; Ekberg, L.E. Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air 2005, 15, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Madanat, H.; Barnes, M.D.; Cole, E.C. Knowledge of the effects of indoor air quality on health among women in Jordan. Health Educ. Behav. 2008, 35, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T. Particle size distributions inside a university office in Amman, Jordan. Jordan J. Phys. 2014, 7, 73–83. [Google Scholar]
- Hussein, T.; Dada, L.; Juwhari, H.; Faouri, D. Characterization, fate, and re-suspension of aerosol particles (0.3–10 µm): The effects of occupancy and carpet use. Aerosol Air Qual. Res. 2015, 15, 2367–2377. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T. Indoor-to-Outdoor relationship of aerosol particles inside a naturally ventilated apartment—A comparison between single-parameter analysis and indoor aerosol model simulation. Sci. Total Environ. 2017, 596–597, 321–330. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhao, S.; Zheng, M.; Mu, C.; Du, K. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. Sci. Total Environ. 2016, 547, 422–428. [Google Scholar] [CrossRef]
- Jiang, R.T.; Acevedo-Bolton, V.; Cheng, K.C.; Klepeis, N.E.; Ott, W.R.; Hildemann, L.M. Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol. J. Environ. Monit. 2011, 13, 1695–1702. [Google Scholar] [CrossRef]
- Matson, U.; Ekberg, L.E.; Afshari, A. Measurement of ultrafine particles: A comparison of two handheld condensation particle counters. Aerosol Sci. Technol. 2004, 38, 487–495. [Google Scholar] [CrossRef]
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- Cai, J.; Yan, B.; Ross, J.; Zhang, D.; Kinney, P.L.; Perzanowski, M.S.; Jung, K.; Miller, R.; Chillrud, S.N. Validation of MicroAeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization. Aerosol Air Qual. Res. 2014, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.H.; Lin, M.H. Real-time performance of the micro-aeth AE51 and the effects of aerosol loading on its measurement results at a traffic site. Aerosol Air Qual. Res. 2013, 13, 1853–1863. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.; Chang, D.P.Y.; Kleeman, M.J.; Perry, K.; Cahill, T.A.; Dutcher, D.; McDougal, E.M.; Stroud, K. Comparison of real-time instruments used to monitor airborne particulate matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Boor, B.E.; Dos Santos, V.N.; Kangasluoma, J.; Petäjä, T.; Lihavainen, H. Mobile aerosol measurement in the eastern Mediterranean—A utilization of portable instruments. Aerosol Air Qual. Res. 2017, 17, 1775–1786. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Saleh, S.S.A.; dos Santos, V.N.; Abdullah, H.; Boor, B.E. Black carbon and particulate matter concentrations in eastern Mediterranean urban conditions—An assessment based on integrated stationary and mobile observations. Atmosphere 2019, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Hämeri, K.; Koponen, I.K.; Aalto, P.P.; Kulmala, M. The particle detection efficiency of the TSI3007 condensation particle counter. Aerosol Sci. 2002, 33, 1463–1469. [Google Scholar] [CrossRef]
- Maricq, M.M. Monitoring motor vehicle PM emissions: An evaluation of three portable low-cost aerosol instruments. Aerosol Sci. Technol. 2013, 47, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Nyarku, M.; Mazaheri, M.; Jayaratne, R.; Dunbabin, M.; Rahman, M.M.; Uhde, E.; Morawska, L. Mobile phones as monitors of personal exposure to air pollution: Is this the future? PLoS ONE 2018, 13, e0193150. [Google Scholar] [CrossRef]
- Wang, X.; Chancellor, G.; Evenstad, J.; Farnsworth, J.; Hase, A.; Olson, G.; Sreenath, A.; Agarwal, J. A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci. Technol. 2009, 43, 939–950. [Google Scholar] [CrossRef]
- Viana, M.; Rivas, I.; Reche, C.; Fonseca, A.S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos. Environ. 2015, 123, 220–228. [Google Scholar] [CrossRef]
- Hussein, T.; Saleh, S.S.A.; dos Santos, V.N.; Boor, B.E.; Koivisto, A.J.; Löndahl, J. Regional inhaled deposited dose of urban aerosols in an eastern Mediterranean city. Atmosphere 2019, 10, 530. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Pui, Z.; Sundell, J. Characterizing the indoor-outdoor relationship of fine particulate matter in non-heating season for urban residences in Beijing. PLoS ONE 2015, 10, e0138559. [Google Scholar] [CrossRef]
- Markowicz, P.; Löndahl, J.; Wierzbicka, A.; Suleiman, R.; Shihadeh, A.; Larsson, L. A study on particles and some microbial markers in waterpipe tobacco smoke. Sci. Total Environ. 2014, 499, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Daher, N.; Saleh, R.; Jaroudi, E.; Sheheitli, H.; Badr, T.; Sepetdjian, E.; Al Rashidi, M.; Saliba, N.; Shihadeh, A. Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors. Atmos. Environ. 2010, 44, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Maziak, W.; Rastam, S.; Ibrahim, I.; Ward, K.D.; Shihadeh, A.; Eissenberg, T. CO exposure, puff topography, and subjective effects in waterpipe tobacco smokers. Nicotine Tobacco Res. 2009, 11, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Eissenberg, T.; Shihadeh, A. Waterpipe tobacco and cigarette smoking direct comparison of toxicant exposure. Am. J. Prev. Med. 2009, 37, 518–523. [Google Scholar] [CrossRef] [Green Version]
- El-Nachef, W.N.; Hammond, S.K. Exhaled carbon monoxide with waterpipe use in US students. JAMA 2008, 299, 36–38. [Google Scholar] [CrossRef]
- Al Rashidi, M.; Shihadeh, A.; Saliba, N.A. Volatile aldehydes in the mainstream smoke of the narghile waterpipe. Food Chem. Toxicol. 2008, 46, 3546–3549. [Google Scholar] [CrossRef] [Green Version]
- Sepetdjian, E.; Alan Shihadeh, A.; Saliba, N.A. Measurement of 16 polycyclic aromatic hydrocarbons in narghile waterpipe tobacco smoke. Food Chem. Toxicol. 2008, 46, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Breland, A.B.; Kleykamp, B.A.; Eissenberg, T. Clinical laboratory evaluation of potential reduced exposure products for smokers. Nicotine Tobacco Res. 2006, 8, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Shihadeh, A.; Saleh, R. Polycyclic aromatic hydrocarbons, carbon monoxide, “tar”, and nicotine in the mainstream smoke aerosol of the narghile water pipe. Food Chem. Toxicol. 2005, 43, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Shihadeh, A. Investigation of mainstream smoke aerosol of the argileh water pipe. Food Chem. Toxicol. 2003, 41, 143–152. [Google Scholar] [CrossRef]
- Hussein, T.; Halayka, M.; Abu Al-Ruz, R.; Abdullah, H.; Mølgaard, B.; Petäjä, T. Fine particle number concentrations in Amman and Zarqa during spring 2014. Jordan J. Phys. 2016, 9, 31–46. [Google Scholar]
- Hussein, T.; Rasha, A.; Tuukka, P.; Heikki, J.; Arafah, D.; Kaarle, H.; Markku, K. Local air pollution versus short-range transported dust episodes: A comparative study for submicron particle number concentration. Aerosol Air Qual. Res. 2011, 11, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.S.A.; Shilbayeh, Z.; Alkattan, H.; Al-Refie, M.R.; Jaghbeir, O.; Hussein, T. Temporal variations of submicron particle number concentrations at an urban background site in Amman—Jordan. Jordan J. Earth Environ. Sci. 2019, 10, 37–44. [Google Scholar]
- Hussein, T.; Dada, L.; Hakala, S.; Petäjä, T.; Kulmala, M. Urban aerosols particle size characterization in eastern Mediterranean conditions. Atmosphere 2019, 10, 710. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Kulmala, M. Indoor aerosol modeling: Basic principles and practical applications. Water Air Soil Pollut. Focus 2008, 8, 23–34. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Indoor particle dynamics. Indoor Air 2004, 14, 175–183. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Bohgard, M.; Pagels, J.H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments. Atmos. Environ. 2015, 106, 419–428. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Marini, S.; Stabile, L. Particle re-suspension in school gyms during physical activities. Aerosol Air Qual. Res. 2012, 12, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Hämeri, K.; Kulmala, M. Long-term indoor-outdoor aerosol measurement in Helsinki, Finland. Boreal Environ. Res. 2002, 7, 141–150. [Google Scholar]
- Shaughnessy, R.; Vu, H. Particle loadings and resuspension related to floor coverings in chamber and in occupied school environments. Atmos. Environ. 2012, 55, 515–524. [Google Scholar] [CrossRef]
- Hussein, T.; Hämeri, K.; Aalto, P.; Asmi, A.; Kakko, L.; Kulmala, M. Particle size characterization and the indoor-to-outdoor relationship of atmospheric aerosols in Helsinki. Scand. J. Work Health Environ. 2004, 30 (Suppl. 2), 54–62. [Google Scholar]
- Ferro, A.R.; Kopperund, R.J.; Hildemann, L.M. Source strengths for indoor human activities that resuspend particulate matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef]
- Hussein, T.; Korhonen, H.; Herrmann, E.; Hämeri, K.; Lehtinen, K.; Kulmala, M. Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Sci. Technol. 2005, 39, 1111–1127. [Google Scholar] [CrossRef]
- Kubota, Y.; Higuchi, H. Aerodynamic Particle re-suspension due to human foot and model foot motions. Aerosol Sci. Technol. 2013, 47, 208–217. [Google Scholar] [CrossRef]
- Hirsikko, A.; Kulmala, M.; Yli-Juuti, T.; Nieminen, T.; Hussein, T.; Vartiainen, E.; Laakso, L. Indoor and outdoor air ion and particle number size distributions in the urban background atmosphere of Helsinki, Finland. Boreal Environ. Res. 2007, 12, 295–310. [Google Scholar]
- Lazaridis, M.; Eleftheriadis, K.; Ždímal, V.; Schwarz, J.; Wagner, Z.; Ondráček, J.; Drossinos, Y.; Glytsos, T.; Vratolis, S.; Torseth, K.; et al. Number concentrations and modal structure of indoor/outdoor fine particles in four European Cities. Aerosol Air Qual. Res. 2017, 17, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Hämeri, K.; Heikkinen, M.S.A.; Kulmala, M. Indoor and outdoor particle size characterization at a family house in Espoo—Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Hussein, T.; Glytsos, T.; Ondráček, J.; Ždímal, V.; Hämeri, K.; Lazaridis, M.; Smolik, J.; Kulmala, M. Particle size characterization and emission rates during indoor activities in a house. Atmos. Environ. 2006, 40, 4285–4307. [Google Scholar] [CrossRef]
- Maragkidou, A.; Jaghbeir, O.; Hämeri, K.; Hussein, T. Aerosol particles (0.3–10 μm) inside an educational workshop-emission rate and inhaled deposited dose. Build. Environ. 2018, 140, 80–89. [Google Scholar] [CrossRef]
Site ID | Type | Area Type | Kitchen/L. Room | Heating Method | Smoking | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ker. | Gas | AC | El. | Cen. | Cig. | Shisha | ||||
A1 | Apartment (3rd floor) | Suburban | Open | √ | √ | √ | ||||
A2 | Apartment (2nd floor) | Rural | Separate | √ | ||||||
D1 | Duplex (2nd and 3rd floors) | Urban Background | Open | √ | √ | √ | ||||
GFA1 | Ground floor apartment | Urban | Separate | √ | √ | |||||
GFA2 | Ground floor apartment | Urban | Separate | √ | √ | |||||
GFA3 | Ground floor apartment | Urban Background | Open | √ | √ | √ | ||||
H1 | House | Suburban | Open | √ | √ | √ | ||||
H2 | House | Rural | Open | √ |
Site ID | Winter Campaign | Summer Campaign | ||||
---|---|---|---|---|---|---|
Start | End | Length | Start | End | Length | |
A1 | 13:15, 23.12.2018 | 11:50, 25.12.2018 | 1d 22h 35m | -- | -- | -- |
A2 | 18:20, 04.01.2019 | 19:50, 05.01.2019 | 1d 01h 30m | -- | -- | -- |
D1 | 14:10, 28.12.2018 | 22:10, 30.12.2018 | 2d 08h 00m | -- | -- | -- |
GFA1 | 15:10, 25.12.2018 | 14:10, 27.12.2018 | 1d 23h 00m | -- | -- | -- |
GFA2 | 12:00, 09.01.2019 | 20:40, 12.01.2019 | 3d 08h 40m | 10:30, 13.06.2019 | 11:20, 22.06.2019 | 9d 00h 50m |
GFA3 | 12:30, 31.12.2018 | 18:30, 02.01.2019 | 2d 06h 00m | 18:50, 16.05.2019 | 23:40, 23.05.2019 | 7d 04h 50m |
H1 | 20:20, 02.01.2019 | 16:30, 04.01.2019 | 1d 20h 10m | -- | -- | -- |
H2 | 12:30, 06.01.2019 | 15:30, 09.01.2019 | 3d 03h 00m | 20:50, 24.05.2019 | 21:30, 29.05.2019 | 5d 00h 40m |
Instrument | Model | Aerosol Size Fraction | Metric | Performance Ref. |
---|---|---|---|---|
Laser Photometer | TSI DustTrak DRX 8534 | PM10, PM2.5, and PM1 | Mass | Wang et al. [33] |
Personal Aerosol Monitor | TSI SidePak AM520 | PM2.5 | Mass | Jiang et al. [34] |
Optical Particle Counter | TSI AeroTrak 9306-V2 | Dp 0.3–25 µm (6 bins) | Number | Wang et al. [33] |
Condensation Particle Counter | TSI CPC 3007 | Dp 0.01–2 µm | Number | Matson et el. [35] |
Condensation Particle Counter | TSI P-Trak 8525 | Dp 0.02–2 µm | Number | Matson et el. [35] |
Gas monitor | AeroQual S500 | O3, HCHO, CO, NO2, SO2, TVOC | ppm | Lin et al. [36] |
Site ID | CPC 3007 | DustTrak | SidePak | |||||
---|---|---|---|---|---|---|---|---|
PN (×104/cm3) | PM2.5 (µg/m3) | PM10 (µg/m3) | PM2.5 (µg/m3) | |||||
Mean ± SD | 95% | Mean ± SD | 95% | Mean ± SD | 95% | Mean ± SD | 95% | |
A1 | 4.3 ± 6.0 | 22.6 | 91 ± 218 | 612 | 93 ± 228 | 628 | 188 ± 403 | 1261 |
A2 | 1.6 ± 1.7 | 6.7 | 44 ± 40 | 157 | 47 ± 42 | 160 | -- | -- |
D1 | 13.3 ± 10.5 | 30.1 | 131 ± 202 | 613 | 132 ± 202 | 614 | 271 ± 448 | 1446 |
GFA1 | 5.4 ± 4.6 | 22.0 | 42 ± 26 | 109 | 45 ± 30 | 123 | 80 ± 38 | 176 |
GFA2 | 3.4 ± 4.0 | 17.0 | 29 ± 34 | 126 | 29 ± 34 | 126 | -- | -- |
GFA3 | 6.3 ± 4.8 | 18.6 | 433 ± 349 | 1230 | 437 ± 350 | 2140 | 998 ± 815 | 2790 |
H1 | 11.7 ± 7.4 | 23.6 | 138 ± 116 | 451 | 141 ± 117 | 453 | 325 ± 310 | 1190 |
H2 | 9.7 ± 6.1 | 25.0 | 156 ± 190 | 694 | 160 ± 190 | 697 | 342 ± 477 | 1690 |
Site ID | CPC 3007 | DustTrak | SidePak | |||||
---|---|---|---|---|---|---|---|---|
PN (×104/cm3) | PM2.5 (µg/m3) | PM10 (µg/m3) | PM2.5 (µg/m3) | |||||
Mean ± SD | 95% | Mean ± SD | 95% | Mean ± SD | 95% | Mean ± SD | 95% | |
GFA2 | 1.5 ± 1.4 | 5.5 | 30 ± 20 | 62 | 31 ± 20 | 64 | 58 ± 34 | 104 |
GFA3 | 1.9 ± 1.6 | 6.3 | 31 ± 46 | 179 | 31 ± 46 | 180 | 158 ± 216 | 819 |
H2 | 1.6 ± 0.9 | 3.8 | 46 ± 24 | 101 | 50 ± 26 | 107 | 89 ± 64 | 305 |
Site ID | CPC 3007 | DustTrak | SidePak | |
---|---|---|---|---|
PN (×103/cm3) | PM2.5 (µg/m3) | PM10 (µg/m3) | PM2.5 (µg/m3) | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
A1 | 6 ± 3 | 18 ± 8 | 18 ± 8 | 45 ± 19 |
A2 | 6 ± 1 | 10 ± 0 | 11 ± 1 | -- |
D1 | 13 ± 2 | 26 ± 0 | 26 ± 0 | 52 ± 3 |
GFA1 | 9 ± 1 | 25 ± 7 | 26 ± 7 | 62 ± 15 |
GFA2 | 9 ± 3 | 10 ± 3 | 10 ± 3 | -- |
GFA3 | 15 ± 5 | 67 ± 18 | 67 ± 18 | 154 ± 45 |
H1 | 10 ± 2 | 28 ± 6 | 29 ± 6 | 59 ± 14 |
H2 | 9 ± 2 | 28 ± 23 | 29 ± 24 | 47 ± 28 |
Combustion | Smoking | Non-Combustion | Additional Activity | PM2.5 (µg/m3) | PM10 (µg/m3) | PN1 (×103 cm−3) | PN10–1 (cm−3) | |||
---|---|---|---|---|---|---|---|---|---|---|
Heat. | Stov. | Shisha | Cig. | Heat. | Other | |||||
√ (NG) | 54 ± 26 | 64 ± 27 | 214 ± 71 | 1 ± 0 | ||||||
√ (NG) | √ | 70 ± 15 | 81 ± 17 | 274 ± 38 | 4 ± 1 | |||||
√ (NG) | √ | Grill burger/sausage | 378 ± 101 | 2094 ± 882 | 383 ± 82 | 131 ± 47 | ||||
√ (NG) | √ | 9 ± 2 | 19 ± 3 | 85 ± 13 | 1 ± 0 | |||||
√ (NG) | √ | 13 ± 7 | 16 ± 7 | 68 ± 11 | null | |||||
√ (NG) | √ | √ | 40 ± 8 | 189 ± 57 | 91 ± 18 | 8 ± 2 | ||||
√ (NG) | √ | √ | 98 ± 26 | 158 ± 51 | 151 ± 37 | 6 ± 3 | ||||
√ (NG) | √ | √ | 173 ± 41 | 424 ± 152 | 245 ± 53 | 36 ± 12 | ||||
√ (NG) | √ | √ | 15 people | 65 ± 17 | 374 ± 91 | 169 ± 52 | 13 ± 3 | |||
√ (K) | √ | 130 ± 15 | 458 ± 110 | 318 ± 53 | 27 ± 9 | |||||
√ (K) | √ | 82 ± 24 | 154 ± 60 | 220 ± 78 | 7 ± 5 | |||||
√ (K) | √ | 78 ± 17 | 141 ± 36 | 236 ± 52 | 5 ± 3 | |||||
√ (K) | √ | 43 ± 17 | 91 ± 60 | 174 ± 62 | 5 ± 5 | |||||
√ (K) | √ | 99 ± 13 | 119 ± 14 | 320 ± 45 | 1 ± 0 | |||||
√ (K) | √ | √ | 118 ± 33 | 139 ± 42 | 397 ± 60 | 4 ± 8 | ||||
√ (K) | √ | √ | 72 ± 24 | 92 ± 30 | 330 ± 46 | 2 ± 1 | ||||
√ (NG) | √ | √ ×2 | 139 ± 27 | 288 ± 114 | 343 ± 72 | 15 ± 10 | ||||
√ (NG) | √ | √ | 75 ± 18 | 226 ± 76 | 198 ± 47 | 14 ± 5 | ||||
√ (NG) | √ | √ | 61 ± 26 | 168 ± 60 | 154 ± 39 | 8 ± 3 | ||||
√ (NG) | √ | √ | √ | 92 ± 33 | 189 ± 46 | 123 ± 34 | 9 ± 6 | |||
√ (NG) | √ | √ ×2 | √ | 132 ± 31 | 291 ± 61 | 242 ± 77 | 13 ± 5 | |||
√ | Cooking soup | 40 ± 11 | 76 ± 17 | 144 ± 40 | 3 ± 1 | |||||
√ | Making chai latte | 41 ± 13 | 49 ± 13 | 160 ± 44 | 1 ± 0 | |||||
√ | √ (C) | Intensive cooking | 76 ± 41 | 191 ± 75 | 116 ± 29 | 14 ± 10 | ||||
√ | √ (C) | Intensive cooking | 85 ± 32 | 181 ± 56 | 207 ± 78 | 11 ± 3 | ||||
√ | √ (C) | Intensive cooking | 88 ± 31 | 201 ± 32 | 183 ± 91 | 12 ± 2 | ||||
√ | √ (C) | Making tea | 31 ± 10 | 52 ± 11 | 117 ± 43 | 1 ± 0 | ||||
√ | √ (C) | Making tea + coffee | 16 ± 4 | 42 ± 10 | 46 ± 13 | 1 ± 0 | ||||
√ | √ (AC) | Intensive cooking | 62 ± 19 | 112 ± 40 | 74 ± 28 | 11 ± 5 | ||||
√ (AC) | AC operation | 10 ± 3 | 61 ± 28 | 12 ± 4 | 3 ± 1 | |||||
√ (C) | √ | Microwave | 17 ± 5 | 44 ± 11 | 47 ± 17 | 1 ± 0 | ||||
√ | Vacuuming | 25 ± 7 | 181 ± 64 | 47 ± 15 | 9 ± 3 | |||||
√ | Brew coffee | 7 ± 2 | 31 ± 21 | 11 ± 5 | 1 ± 1 | |||||
√ | Brew coffee + toast | 14 ± 10 | 18 ± 11 | 42 ± 29 | null | |||||
√ | Toaster | 15 ± 6 | 23 ± 7 | 44 ± 21 | 8 ± 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, T.; Alameer, A.; Jaghbeir, O.; Albeitshaweesh, K.; Malkawi, M.; Boor, B.E.; Koivisto, A.J.; Löndahl, J.; Alrifai, O.; Al-Hunaiti, A. Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. Atmosphere 2020, 11, 41. https://doi.org/10.3390/atmos11010041
Hussein T, Alameer A, Jaghbeir O, Albeitshaweesh K, Malkawi M, Boor BE, Koivisto AJ, Löndahl J, Alrifai O, Al-Hunaiti A. Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. Atmosphere. 2020; 11(1):41. https://doi.org/10.3390/atmos11010041
Chicago/Turabian StyleHussein, Tareq, Ali Alameer, Omar Jaghbeir, Kolthoum Albeitshaweesh, Mazen Malkawi, Brandon E. Boor, Antti Joonas Koivisto, Jakob Löndahl, Osama Alrifai, and Afnan Al-Hunaiti. 2020. "Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments" Atmosphere 11, no. 1: 41. https://doi.org/10.3390/atmos11010041
APA StyleHussein, T., Alameer, A., Jaghbeir, O., Albeitshaweesh, K., Malkawi, M., Boor, B. E., Koivisto, A. J., Löndahl, J., Alrifai, O., & Al-Hunaiti, A. (2020). Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. Atmosphere, 11(1), 41. https://doi.org/10.3390/atmos11010041