Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Soil Samples and Analyses
2.3. Soil Incubation Experiment
2.4. Statistical Analysis
3. Results
3.1. The Positive Response of Soil CO2 Flux to Temperature and N or C Addition
3.2. Different Response of Net N Mineralization Rate to Temperature and N or C Addition
3.3. Relationship of Soil CO2 Flux to Net N Mineralization Rate
3.4. The Response of Soil Labile C to Temperature, Labile C and N Addition
4. Discussion
4.1. Positive Response of Soil C Mineralization to Temperature and C Addition
4.2. Neutral Impact of N Addition on Soil C Mineralization
4.3. Soil Net N Mineralization Rate Responses to Temperature and the Addition of N in Four Wetland Soils
4.4. Correlation Between Soil CO2 Efflux and Net N Mineralization Responses to Soil Type, and Addition of N or C in Four Wetland Soils
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Jin, V.L.; Haney, R.L.; Fay, P.A.; Polley, H.W. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biol. Biochem. 2013, 58, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Liu, J.; Chang, S.X. Temperature sensitivity of soil carbon and nitrogen mineralization: Impacts of nitrogen species and land use type. Plant Soil 2013, 372, 597–608. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Hou, A.; Ren, J.; Wang, X.; Cui, Q.; Wang, M. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland. Catena 2018, 165, 381–389. [Google Scholar] [CrossRef]
- Jiang, C.; Yu, G.; Fang, H.-J.; Cao, G.; Li, Y. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 2010, 44, 2920–2926. [Google Scholar] [CrossRef]
- Fisk, M.C.; Ratliff, T.J.; Goswami, S.; Yanai, R.D. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 2013, 118, 195–204. [Google Scholar] [CrossRef]
- Lund, M.; Christensen, T.R.; Mastepanov, M.; Lindroth, A.; Ström, L. Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences 2009, 6, 2135–2144. [Google Scholar] [CrossRef] [Green Version]
- Grenon, F.; Bradley, R.; Titus, B. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: Possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 2004, 36, 1465–1474. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liang, W.; He, F.; Cheng, S.P.; Wu, Z.B. Effects of nutrients on the substrate biofilms in the integrated vertical-flow constructed wetland. Fresen Environ. Bull. 2008, 17, 732–737. [Google Scholar]
- Weedon, J.T.; Kowalchuk, G.A.; Aerts, R.; Van Hal, J.; Van Logtestijn, R.; Taş, N.; Röling, W.F.M.; Van Bodegom, P.M.; Van Logtestijn, R.S.P. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob. Chang. Biol. 2011, 18, 138–150. [Google Scholar] [CrossRef]
- Weedon, J.T.; Aerts, R.; A Kowalchuk, G.; Van Logtestijn, R.; Andringa, D.; Van Bodegom, P.M. Temperature sensitivity of peatland C and N cycling: Does substrate supply play a role? Soil Biol. Biochem. 2013, 61, 109–120. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Six, J. Tracing Root vs. Residue Carbon into Soils from Conventional and Alternative Cropping Systems. Soil Sci. Soc. Am. J. 2010, 74, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, A.; Tateno, R.; Shibata, H. Effects of carbon and nitrogen amendment on soil carbon and nitrogen mineralization in volcanic immature soil in southern Kyushu, Japan. J. For. Res. 2011, 16, 414–423. [Google Scholar] [CrossRef]
- Waldrop, M.; Zak, D.R. Response of Oxidative Enzyme Activities to Nitrogen Deposition Affects Soil Concentrations of Dissolved Organic Carbon. Ecosystems 2006, 9, 921–933. [Google Scholar] [CrossRef]
- Li, X.; Han, H.; Ninga, T.; Lal, R. CO2–C evolution rate in an incubation study with straw input to soil managed by different tillage systems. RSC Adv. 2018, 8, 12588–12596. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-R.; Ren, J.-Q.; Li, S.-G.; Zhang, Q.-W. Effects of Simulated Nitrogen Deposition on Soil Net Nitrogen Mineralization in the Meadow Steppe of Inner Mongolia, China. PLoS ONE 2015, 10, e0134039. [Google Scholar] [CrossRef]
- Yoshitake, S.; Uchida, M.; Koizumi, H.; Nakatsubo, T. Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-Ålesund, Svalbard. Polar Res. 2007, 26, 22–30. [Google Scholar] [CrossRef]
- Fisk, M.C.; Santangelo, S.; Minick, K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biol. Biochem. 2015, 81, 212–218. [Google Scholar] [CrossRef]
- Zang, H.; Wang, J.; Kuzyakov, Y. N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl. Soil Ecol. 2016, 108, 47–53. [Google Scholar] [CrossRef]
- Scott, N.A.; Parfitt, R.L.; Ross, D.J.; Salt, G.J. Carbon and nitrogen transformations in New Zealand plantation forest soils from sites with different N status. Can. J. For. Res. 1998, 28, 967–976. [Google Scholar] [CrossRef]
- Jensen, L.S.; Salo, T.; Palmason, F.; Breland, T.A.; Henriksen, T.M.; Stenberg, B.; Pedersen, A.; Lundström, C.; Esala, M. Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 2005, 273, 307–326. [Google Scholar] [CrossRef]
- Kelliher, F.; Ross, D.; Law, B.E.; Baldocchi, D.; Rodda, N. Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. For. Ecol. Manag. 2004, 191, 201–213. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, X.; Wang, D.; Wang, M.; Liao, C.; Yang, X.; Liu, F. Decoupled linkage between soil carbon and nitrogen mineralization among soil depths in a subtropical mixed forest. Soil Biol. Biochem. 2017, 109, 135–144. [Google Scholar] [CrossRef]
- Gao, J.-Q.; Ouyang, H.; Xu, X.; Zhou, C.-P.; Zhang, F. Effects of Temperature and Water Saturation on CO2 Production and Nitrogen Mineralization in Alpine Wetland Soils. Pedosphere 2009, 19, 71–77. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; He, J.-S.; Feng, X. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 2017, 8, 15972. [Google Scholar] [CrossRef]
- Song, C.; Wang, L.; Tian, H.; Liu, D.; Lu, C.; Xu, X.; Zhang, L.; Yang, G.; Wan, Z. Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. J. Geophys. Res. Biogeosci. 2013, 118, 741–751. [Google Scholar] [CrossRef]
- Xing, Y.; Jiang, Q.; Li, W. Landscape spatial patterns changes of the wetland in Qinghai-Tibet Plateau. Ecol. Environ. Sci. 2009, 18, 1010–1015. [Google Scholar]
- Ding, W.; Cai, Z.; Wang, D. Preliminary budget of methane emissions from natural wetlands in China. Atmos. Environ. 2004, 38, 751–759. [Google Scholar] [CrossRef]
- Vance, E.; Brookes, P.; Jenkinson, D. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Jarvis, P.G. Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). Eur. J. Soil Sci. 2008, 59, 1049–1062. [Google Scholar] [CrossRef]
- Song, M.-H.; Jiang, J.; Xu, X.; Shi, P.-L. Correlation Between CO2 Efflux and Net Nitrogen Mineralization and Its Response to External C or N Supply in an Alpine Meadow Soil. Pedosphere 2011, 21, 666–675. [Google Scholar] [CrossRef]
- Liu, W.; Xu, W.; Han, Y.; Wang, C.; Wan, S. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biol. Fertil. Soils 2007, 44, 259–268. [Google Scholar] [CrossRef]
- Li, Y.C.; Song, C.C.; Hou, C.C.; Wang, X.W. Effects of nitrogen addition on carbon mineralization in boreal peatlands soil in Northeast China: A laboratory study. Fresen Environ. Bull. 2014, 23, 970–975. [Google Scholar]
- Hodge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L. A theoretical model of litter decay and microbial interaction. Ecol. Monog. 2006, 76, 151–174. [Google Scholar] [CrossRef]
- Hagedorn, F.; Spinnler, D.; Bundt, M.; Blaser, P.; Siegwolf, R.T.W. The input and fate of new C in two forest soils under elevated CO2. Glob. Chang. Biol. 2003, 9, 862–872. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C.A. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Craine, J.M.; Morrow, C.; Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 2007, 88, 2105–2113. [Google Scholar] [CrossRef]
- Schimel, D.S.; Parton, W.J.; Adamsen, F.J.; Woodmansee, R.G.; Senft, R.L.; Stillwell, M.A. The role of cattle in the volatile loss of nitrogen from a shortgrass steppe. Biogeochemistry 1986, 2, 39–52. [Google Scholar] [CrossRef]
- Bosatta, E.; Berendse, F. Energy or nutrient regulation of decomposition: Implications for the mineralization-immobilization response to perturbations. Soil Biol. Biochem. 1984, 16, 63–67. [Google Scholar] [CrossRef]
- Luxhøi, J.; Bruun, S.; Stenberg, B.; Breland, T.A.; Jensen, L.S. Prediction of Gross and Net Nitrogen Mineralization-Immobilization-Turnover from Respiration. Soil Sci. Soc. Am. J. 2006, 70, 1121–1128. [Google Scholar] [CrossRef]
- Janssen, B.H. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil 1996, 181, 39–45. [Google Scholar] [CrossRef]
- Barrett, J.; Burke, I. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol. Biochem. 2000, 32, 1707–1716. [Google Scholar] [CrossRef]
- Biasi, C.; Rusalimova, O.; Meyer, H.; Kaiser, C.; Wanek, W.; Barsukov, P.; Junger, H.; Richter, A. Temperature-dependent shift from labileto recalcitrant carbon sources of arctic heterotrophs. Rapid Commun. Mass Spectom. 2005, 19, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xu, X.; Kueffer, C.; Zhang, X.; Shi, P. Leaf litter of a dominant cushion plant shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant Soil 2014, 383, 415–426. [Google Scholar] [CrossRef]
- Manzoni, S.; Porporato, A. A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles. Soil Biol. Biochem. 2007, 39, 1542–1556. [Google Scholar] [CrossRef]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The Global Stoichiometry of Litter Nitrogen Mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef]
- Parfitt, R.; Scott, N.; Ross, D.; Salt, G.; Tate, K. Land-use change effects on soil C and N transformations in soils of high N status: Comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry 2003, 66, 203–221. [Google Scholar] [CrossRef]
Study Sites | Location | Altitude (m) | Monthly Average Temperature (°C) | Mean Precipitation (mm) | Main Soil Types | Dominant Plant Communities | |
---|---|---|---|---|---|---|---|
Max | Min | ||||||
SW | 47°35′ N, 133°31′ E | 56 | 22 | −21 | 600 | Peat soil (Umbric Gleysol) | Calamagrostis angustifolia and Carex lasiocarpa |
ZW | 33°34′ N, 102°56′ E | 3452 | 10.9 | −10.7 | 700 | Peat soil (Umbric Gleysol) | Carex muliensis and C. lasiocarpa |
YW | 37°34′ N, 118°48′ E | 17 | 27.3 | −5.2 | 552 | Fluvo soil (Calcaric Fluvisols) | Phragmites australis and Suaeda salsa |
BL | 38°43′ N, 115°38′ E | 8.8 | 25.5 | −3.1 | 525 | Marsh soil (Calca ric Fluvisal) | Phragmites australis |
Physical-Chemical Properties | SW | ZW | YW | BL |
---|---|---|---|---|
Water content (%) | 398 ± 12.46 | 125 ± 3.74 | 25 ± 1.34 | 23 ± 0.94 |
pH | 5.22 ± 0.58 | 6.16 ± 0.04 | 5.96 ± 0.06 | 6.85 ± 0.88 |
NO3−-N (mg kg−1) | 10.08 ± 1.02 | 9.59 ± 1.89 | 7.60 ± 0.06 | 4.10 ± 0.05 |
NH4+-N (mg kg−1) | 88.16 ± 5.56 | 63.45 ± 5.22 | 11.79 ± 0.09 | 19.85 ± 1.20 |
TC (g kg−1) | 325.72 ± 10.79 | 260.89 ± 11.19 | 4.23 ± 0.03 | 11.57 ± 0.37 |
DOC (mg kg−1) | 857.53 ± 25.14 | 800.50 ± 22.35 | 32.33 ± 4.01 | 68.73 ± 5.02 |
Total N (g kg−1) | 17.29 ± 0.26 | 12.03 ± 0.05 | 0.64 ± 0.03 | 1.87 ± 0.04 |
C: N | 18.89 ± 0.41 | 21.68 ± 0. 34 | 6.60 ± 0.12 | 6.19 ± 0.24 |
Microbial biomass C (mg kg−1) | 497.44 ± 12.63 | 332.18 ± 12.41 | 110.18 ± 12.85 | 103.77 ± 6.57 |
Microbial biomass N (mg kg−1) | 89.74 ± 2.36 | 59.18 ± 5.56 | 26.84 ± 1.55 | 22.52 ± 0.96 |
Microbial biomass C: N | 5.54 ± 0.09 | 5.61 ± 0.11 | 4.09 ± 0.06 | 4.61 ± 0.08 |
Labile C (mg kg−1) | 1354.97 ± 27.56 | 1133.73 ± 24.62 | 142.72 ± 12.47 | 172.47 ± 12.73 |
Wetland Type | N or C Addition | Soil CO2 Flux | N Mineralization Rate |
---|---|---|---|
Q10 | Q10 | ||
SW | CK | 1.516 ± 0.03b(a) | 1.563 ± 0.05d(a) |
N1 addition | 1.520 ± 0.03b(a) | 1.243 ± 0.02c(b) | |
N2 addition | 1.509 ± 0.02b(a) | 1.143 ± 0.03c(b) | |
C1 addition | 1. 623 ± 0.05c(b) | 0.781 ± 0.01a(c) | |
C2 addition | 1. 618 ± 0.04c(b) | 0.880 ± 0.01a(c) | |
ZW | CK | 1.474 ± 0.03b(a) | 1.552 ± 0.04d(a) |
N1 addition | 1.453 ± 0.03b(a) | 1.242 ± 0.03c(b) | |
N2 addition | 1.457 ± 0.04b(a) | 1.165 ± 0.03c(b) | |
C1 addition | 1.589 ± 0.05c(b) | 0.877 ± 0.02a(c) | |
C2 addition | 1.609 ± 0.07c(b) | 0.871 ± 0.01a(c) | |
YW | CK | 1.201 ± 0.02a(a) | 1.082 ± 0.02b(a) |
N1 addition | 1.223 ± 0.02a(a) | 1.093 ± 0.02b(a) | |
N2 addition | 1.219 ± 0.01a(a) | 1.078 ± 0.02b(a) | |
C1 addition | 1.392 ± 0.02a(b) | 1.248 ± 0.03c(b) | |
C2 addition | 1.442 ± 0.04b(b) | 1.348 ± 0.03cd(b) | |
BL | CK | 1.227 ± 0.02a(a) | 1.188 ± 0.02c(a) |
N1 addition | 1.221 ± 0.01a(a) | 1.223 ± 0.03c(a) | |
N2 addition | 1.257 ± 0.03a(a) | 1.207 ± 0.03c(a) | |
C1 addition | 1.453 ± 0.05b(b) | 1.521 ± 0.06d(b) | |
C2 addition | 1.441 ± 0.04b(b) | 1.578 ± 0.05d(b) |
Subjects | Mean CO2-C Efflux (mg C kg−1 Soil d−1) | |||||||
---|---|---|---|---|---|---|---|---|
SW | ZW | YW | BL | |||||
F | p | F | p | F | p | F | p | |
T | 57.591 | <0.001 | 12.585 | <0.001 | 19.365 | <0.001 | 9.349 | <0.001 |
N | 0.072 | 0.931 | 0.199 | 0.820 | 0.122 | 0.885 | 0.330 | 0.720 |
C | 10.241 | <0.001 | 23.007 | <0.001 | 34.419 | <0.001 | 28.033 | <0.001 |
T × N | 0.101 | 0.982 | 0.015 | 1.000 | 0.086 | 0.987 | 0.208 | 0.933 |
T × C | 0.900 | 0.468 | 2.260 | 0.069 | 2.358 | 0.059 | 0.791 | 0.534 |
Wetland Type | N or C Addition | Line Equation | R2 | p |
---|---|---|---|---|
SW | CK | y = −2.86x + 0.22 | 0.87 | <0.01 |
N1 and N2 addition | y = −0.89x + 0.85 | 0.08 | <0.05 | |
C1 and C2 addition | y = 1.77x + 2.00 | 0.23 | <0.05 | |
ZW | CK | y = −0.69x + 0.01 | 0.72 | <0.01 |
N1 and N2 addition | y = −0.24x + 0.12 | 0.15 | <0.05 | |
C1 and C2 addition | y = 1.10x + 0.70 | 0.24 | <0.05 | |
YW | CK | y = 0.86x + 0.11 | 0.23 | <0.01 |
C1 and C2 addition | y = 0.92x + 0.15 | 0.23 | <0.05 | |
BL | CK | y = 1.91x + 0.03 | 0.56 | <0.05 |
C1 and C2 addition | y = 2.65x + 0.10 | 0.30 | <0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, Y.; Li, Y. Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China. Atmosphere 2020, 11, 1043. https://doi.org/10.3390/atmos11101043
Wang C, Zhang Y, Li Y. Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China. Atmosphere. 2020; 11(10):1043. https://doi.org/10.3390/atmos11101043
Chicago/Turabian StyleWang, Chunmei, Yunyun Zhang, and Yun Li. 2020. "Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China" Atmosphere 11, no. 10: 1043. https://doi.org/10.3390/atmos11101043
APA StyleWang, C., Zhang, Y., & Li, Y. (2020). Soil Type and a Labile C Addition Regime Control the Temperature Sensitivity of Soil C and N Mineralization More than N Addition in Wetland Soils in China. Atmosphere, 11(10), 1043. https://doi.org/10.3390/atmos11101043