High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea)
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Description
2.2. Experimental Design
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 23 August 2020).
- Johannessen, O.M.; Kuzmina, S.; Bobylev, L.P.; Miles, M.W. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization. Tellus 2016, 68A, 28234. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Glob. Plan. Change 2014, 117, 52–63. [Google Scholar] [CrossRef]
- Budikova, D. Role of Arctic sea ice in global atmospheric circulation: A review. Glob. Plan. Change 2009, 68, 149–163. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Overland, J.; Francis, J.A.; Hall, R.; Hanna, E.; Kim, S.J.; Vihma, T. The melting Arctic and midlatitude weather patterns: Are they connected? J. Clim. 2015, 28, 7917–7932. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Deser, C.; Simmonds, I. Local and remote controls on observed Arctic warming. GRL 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geoph. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Barnes, E.A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. GRL 2013, 40, 4734–4739. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. GRL 2012, 39. [Google Scholar] [CrossRef]
- Kohnemann, S.H.; Heinemann, G.; Bromwich, D.H.; Gutjahr, O. Extreme warming in the Kara Sea and Barents Sea during the winter period 2000–16. J. Clim. 2017, 30, 8913–8927. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Simpson, I.R.; Smith, K.L.; Zhang, X.; De, B.; Callaghan, P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 2018, 4, eaat6025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.Y.; Yuan, X.; Ting, M. Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Clim. 2016, 29, 5103–5122. [Google Scholar] [CrossRef]
- Petoukhov, V.; Semenov, V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geoph. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Kug, J.-S.; Jeong, J.-H.; Jang, Y.-S.; Kim, B.-M.; Folland, C.K.; Min, S.-K.; Son, S.-W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Outten, S.D.; Esau, I. A link between Arctic sea ice and recent cooling trends over Eurasia. Clim. Chang. 2012, 110, 1069–1075. [Google Scholar] [CrossRef]
- Orlanski, I. A rational subdivision of scales for atmospheric processes. BAMS 1975, 56, 527–530. [Google Scholar]
- Moore, G.W.K.; Renfrew, I.A. Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Clim. 2005, 18, 3713–3725. [Google Scholar] [CrossRef]
- Shestakova, A.A. Novaya Zemlya bora: The lee characteristics and the oncoming flow’s structure. Arct. Antarct. 2016, 2, 11–22. [Google Scholar] [CrossRef]
- Christakos, K.; Furevik, B.R.; Aarnes, O.J.; Breivik, Ø.; Tuomi, L.; Byrkjedal, Ø. The importance of wind forcing in fjord wave modelling. Ocean. Dyn. 2020, 70, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Kilpeläinen, T.; Vihma, T.; Manninen, M.; Sjöblom, A.; Jakobson, E.; Palo, T.; Maturilli, M. Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Q. J. R. Met. Soc. 2012, 138, 1867–1883. [Google Scholar] [CrossRef] [Green Version]
- Khvorostyanov, V.I.; Curry, J.A.; Gultepe, I.; Strawbridge, K. A springtime cloud over the Beaufort Sea polynya: Three-dimensional simulation with explicit spectral microphysics and comparison with observations. J. Geophys. Res. 2003, 108, 4296. [Google Scholar] [CrossRef] [Green Version]
- Gutjahr, O.; Heinemann, G. A model-based comparison of extreme winds in the Arctic and around Greenland. Int. J. Clim. 2018, 38, 5272–5292. [Google Scholar] [CrossRef] [Green Version]
- ReVelle, D.O.; Nilsson, E.D. Summertime low-level jets over the high-latitude Arctic Ocean. J. Appl. Met. Clim. 2008, 47, 1770–1784. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A review of high impact weather for aviation meteorology. Pure Appl. Geoph. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Met. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. BAMS 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Met. Soc. 2020, 146. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. BAMS 2010, 91, 1015. [Google Scholar] [CrossRef]
- Bromwich, D.; Kuo, Y.H.; Serreze, M.; Walsh, J.; Bai, L.S.; Barlage, M.; Hines, K.; Slater, A. Arctic system reanalysis: Call for community involvement. Eos. Trans. AGU 2010, 91, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.; Wilson, A.B.; Bai, L.; Liu, Z.; Barlage, M.; Shih, C.-F.; Maldonado, S.; Hines, K.M.; Wang, S.-H.; Woollen, J.; et al. The Arctic System Reanalysis, Version 2. BAMS 2018, 99, 805–828. [Google Scholar] [CrossRef]
- Hines, K.M.; Bromwich, D.H. Development and testing of Polar WRF. Part I: Greenland ice sheet meteorology. Mon. Weather Rev. 2008, 136, 1971–1989. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.H.; Wilson, A.B.; Bai, L.S.; Moore, G.W.K.; Bauer, P. A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Q. J. R. Met. Soc. 2016, 142, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.I.; Verezemskaya, P.S.; Zabolotskikh, E.V.; Repina, I.A. Quality estimation of polar lows reproduction based on reanalysis data and regional climate modelling. Sovr. Problemy Distanc. Zondir. Zemli iz Kosmosa 2016, 13, 168–191. [Google Scholar] [CrossRef]
- Gavrikov, A.; Gulev, S.K.; Markina, M.; Tilinina, N.; Verezemskaya, P.; Barnier, B.; Dufour, A.; Zolina, O.; Zyulyaeva, Y.; Krinitskiy, M.; et al. RAS-NAAD: 40-yr High-Resolution North Atlantic Atmospheric Hindcast for Multipurpose Applications (New Dataset for the Regional Mesoscale Studies in the Atmosphere and the Ocean). J. Appl. Met. Clim. 2020, 59, 793–817. [Google Scholar] [CrossRef]
- Verezemskaya, P.S.; Stepanenko, V.M. Numerical simulation of the structure and evolution of a polar mesocyclone over the Kara Sea. Part 1. Model validation and estimation of instability mechanisms. Russ. Meteorol. Hydrol. 2016, 41, 425–434. [Google Scholar] [CrossRef]
- Diansky, N.; Fomin, V.; Kabatchenko, I.; Gusev, A. Numerical simulation of circulation in Kara and Pechora Seas using the system of operational diagnosis and forecast of the marine dynamics. EGUGA 2015, 4, 13370. [Google Scholar]
- Semenov, A.; Zhang, X.; Rinke, A.; Dorn, W.; Dethloff, K. Arctic intense summer storms and their impacts on sea ice—A regional climate modeling study. Atmosphere 2019, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Information about CLM-Community. Available online: https://wiki.coast.hzg.de/clmcom (accessed on 15 August 2020).
- Böhm, U.; Kücken, M.; Ahrens, W.; Block, A.; Hauffe, D.; Keuler, K.; Rockel, B.; Will, A. CLM–The Climate Version of LM: Brief Description and Long-Term Applications. COSMO Newslett. 2006, 6, 225–235. [Google Scholar]
- Rockel, B.; Geyer, B. The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Met. Zeitsch. 2008, 17, 487–498. [Google Scholar] [CrossRef]
- Arakawa, A.; Lamb, V.R. Computational design of the basic dynamical processes of the UCLA general circulation model. Meth. Comp. Phys. 1977, 17, 173–265. [Google Scholar]
- Gal-Chen, T.; Somerville, R.C.J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comp. Phys. 1975, 17, 209–228. [Google Scholar] [CrossRef]
- Schär, C.; Leuenberger, D.; Fuhrer, O.; Lüthi, D.; Girard, C. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Weather Rev. 2002, 130, 2459–2480. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.B.; Durran, D.R. An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Weather Rev. 1983, 111, 430–444. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Weather Rev. 1992, 120, 2109–2127. [Google Scholar] [CrossRef] [Green Version]
- Core Documentation of the COSMO Model. Available online: http://www.cosmo-model.org/content/model/documentation/core/default.htm (accessed on 9 August 2020).
- Asensio, H.; Messmer, M.; Lüthi, D.; Osterried, K. External Parameters for Numerical Weather Prediction and Climate Application EXTPAR v5_0. User and Implementation Guide. Available online: http://www.cosmo-model.org/content/support/software/ethz/EXTPAR_user_and_implementation_manual_202003.pdf (accessed on 16 November 2018).
- Schulz, J.-P.; Heise, E. A new scheme for diagnosing near-surface convective gusts. COSMO Newslett. 2003, 3, 221–225. [Google Scholar]
- Platonov, V.S.; Varentsov, M.I. Supercomputer technologies as a tool for high-resolution atmospheric modelling towards the climatological timescales. Supercomp. Front. Innov. 2018, 5, 107–110. [Google Scholar] [CrossRef]
- Chen, F.; von Storch, H. Trends and Variability of North Pacific Polar Lows. Adv. Met. 2013, 13, 1–11. [Google Scholar] [CrossRef]
- Haas, R.; Pinto, J.G. A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms. GRL 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model. Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Geyer, B. High-resolution atmospheric reconstruction for Europe 1948–2012: CoastDat2. Earth Syst. Sci. Data 2014, 6, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Hackenbruch, J.; Schädler, G.; Schipper, J.W. Added value of high-resolution regional climate simulations for regional impact studies. Met. Zeitsch. 2016, 25, 291–304. [Google Scholar] [CrossRef]
- Keuler, K.; Radtke, K.; Kotlarski, S.; Lüthi, D. Regional climate change over Europe in COSMO-CLM: Influence of emission scenario and driving global model. Met. Zeitsch. 2016, 121–136. [Google Scholar] [CrossRef]
- Kislov, A.V.; Rivin, G.S.; Platonov, V.S.; Varentsov, M.I.; Rozinkina, I.A.; Nikitin, M.A.; Chumakov, M.M. Mesoscale atmospheric modeling of extreme velocities over the sea of Okhotsk and Sakhalin. Izv. Atm. Ocean. Phys. 2018, 54, 322–326. [Google Scholar] [CrossRef]
- Platonov, V.; Kislov, A.; Rivin, G.; Varentsov, M.; Rozinkina, I.; Nikitin, M.; Chumakov, M. Mesoscale atmospheric modelling technology as a tool for creating a long-term meteorological dataset. IOP Conf. Series Earth Env. Sci. 2017, 96. [Google Scholar] [CrossRef]
- Platonov, V.; Varentsov, M. Creation of the long-term high-resolution hydrometeorological archive for Russian Arctic: Methodology and first results. IOP Conf. Series Earth Env. Sci. 2019, 386. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX. p. 74. Available online: https://www.aquaveo.com/software/sms-adcirc (accessed on 4 October 2020).
- Bucchignani, E.; Montesarchio, M.; Zollo, A.L.; Mercogliano, P. High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century. Int. J. Clim. 2016, 6, 735–756. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Comiso, J.C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett. 2013, 40, 1356–1361. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Girard-Ardhuin, F. Wave climate in the Arctic 1992–2014: Seasonality and trends. Cryosphere 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Simmonds, I.; Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 2011, 116, D15105. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M. The influence of spectral nudging on typhoon formation in regional climate models. Environ. Res. Lett. 2012, 7, 014024. [Google Scholar] [CrossRef]
- Miguez-Macho, G.; Stenchikov, G.L.; Robock, A. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Hofherr, T.; Kunz, M. Extreme wind climatology of winter storms in Germany. Clim. Res. 2010, 41, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Panitz, H.J.; Schädler, G.; Feldmann, H. Modelling Regional Climate Change in Southwest Germany. In High Performance Computing in Science and Engineering’09; Springer: Berlin, Heidelberg, 2010; pp. 429–441. [Google Scholar] [CrossRef]
- Marsaleix, P.; Auclair, F.; Estournel, C. Considerations on open boundary conditions for regional and coastal ocean models. J. Atmos. Ocean. Technol. 2006, 23, 1604–1613. [Google Scholar] [CrossRef]
- Warner, T.T.; Peterson, R.A.; Treadon, R.E. A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. BAMS 1997, 78, 2599–2618. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Dethloff, K. On the sensitivity of a regional Arctic climate model to initial and boundary conditions. Clim. Res. 2000, 14, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Voevodin, V.L.; Antonov, A.; Nikitenko, D.; Shvets, P.; Sobolev, S.; Sidorov, I.; Stefanov, K.; Voevodin, V.; Zhumatiy, S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomp. Front. Innov. 2019, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Bulygina, O.N.; Veselov, V.M.; Razuvaev, V.N.; Alexandrova, T.M. Database Description of the Main Meteorological Parameters on the Russian Stations: Certificate of State Register Database No. 2014620549. Reg. 10.04.2014. Available online: http://meteo.ru/data/163-basic-parameters#oписание-массива-данных (accessed on 9 August 2020).
- Efimov, V.V.; Komarovskaya, O.I. The Novaya Zemlya bora: Analysis and numerical modeling. Izv. Atm. Ocean. Phys. 2018, 54, 73–85. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Myslenkov, S.A.; Kuznetsova, A.M. Influence of Novaya Zemlya Bora on Sea Waves: Satellite Measurements and Numerical Modeling. Atmosphere 2020, 11, 726. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J. Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res. 2012, 117, D10104. [Google Scholar] [CrossRef]
- Tilinina, N.; Gulev, S.K.; Bromwich, D.H. New view of Arctic cyclone activity from the Arctic system reanalysis. Geophys. Res. Lett. 2014, 41, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Matthes, H.; Semenov, V.A.; Adakudlu, M.; Cassano, J.; Christensen, J.H.; Dembitskaya, M.A.; Dethloff, K.; et al. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). J. Geophys. Res. Atmos. 2018, 123, 2537–2554. [Google Scholar] [CrossRef]
- Smith, R.B. 100 Years of Progress on Mountain Meteorology Research. Meteo. Monogr. 2019, 59, 20.1–20.73. [Google Scholar] [CrossRef]
- Gill, A. Atmosphere-Ocean. Dynamics; Academic Press: New York, NY, USA, 1982; p. 662. [Google Scholar]
- Etling, D. On Atmospheric Vortex Streets in the Wake of Large Islands. Meteorol. Atmos. Phys. 1989, 41, 157–164. [Google Scholar] [CrossRef]
- Etling, D. Mesoscale Vortex Shedding from Large Islands: A Comparison with Laboratory Experiments of Rotating Stratified Flows. Meteorol. Atmos. Phys. 1990, 43, 145–151. [Google Scholar] [CrossRef]
- McGinley, J.A.; Zupanski, M. Numerical Analysis of the Influence of Jets, Fronts, and Mountains on Alpine Lee Cyclogenesis: More Cases from the ALPEX SOP. Meteorol. Atmos. Phys. 1990, 43, 7–20. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; p. 532. [Google Scholar]
- Corby, G.A. The airflow over mountains: A review of the state of current knowledge. Q. J. R. Met. Soc. 1954, 80, 491–521. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: New York, NY, USA, 2013; p. 532. [Google Scholar]
- Narasimha, R.; Rao, K.N.; Badri Narayanan, M.A. “Bursts” in Turbulent Flows. Adv. Geophys. 1975, 18, 372. [Google Scholar] [CrossRef]
- Vassilicos, J.C. Intermittency in Turbulent Flows; Cambridge Univ. Press: Cambridge, UK, 2001. [Google Scholar]
- Jiménez, J. Intermittency in Turbulence. In Encyclopedia of Mathematical Physics; Françoise, J.-P., Naber, G.L., Tsun, T.S., Eds.; Academic Press Elsevier: Oxford, UK, 2006; pp. 144–151. [Google Scholar] [CrossRef]
- Kislov, A.; Matveeva, T. An extreme value analysis of wind speed over the European and Siberian parts of Arctic region. Atm. Clim. Sci. 2016, 6, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Shestakova, A.A.; Toropov, P.A.; Matveeva, T.A. Climatology of extreme downslope windstorms in the Russian Arctic. Wea. Clim. Extr. 2020, 28, 100256. [Google Scholar] [CrossRef]
- Durran, D.R. Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci. 1986, 43, 2527–2543. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Moiseenko, K.B. Hydraulic Regimes of Flow over Mountains during Severe Downslope Windstorms: Novorossiysk Bora, Novaya Zemlya Bora, and Pevek Yuzhak. Izv. Atm. Ocean. Phys. 2018, 54, 344–353. [Google Scholar] [CrossRef]
2012 | Correlation Coefficient | Mean Bias, m/s | Median Bias, m/s | RMSE, m/s | STD, m/s |
---|---|---|---|---|---|
2012 13 km | 0.61 | 0.08 | 0.04 | 2.84 | 2.69 |
2012 3 km | 0.58 | −0.51 | −0.52 | 2.85 | 2.72 |
2012 13 km sn | 0.77 | 0.13 | 0.15 | 2.19 | 1.96 |
2012 3 km sn | 0.75 | −0.01 | 0.00 | 2.24 | 2.17 |
2012 13 km sn dt | 0.78 | 0.01 | 0.05 | 2.17 | 2.00 |
2012 3 km sn dt | 0.77 | −0.09 | −0.04 | 2.15 | 2.07 |
2012 3 km sn large | 0.76 | −0.10 | −0.05 | 2.22 | 2.13 |
Reanalyses | |||||
ERA-Interim | 0.73 | 0.39 | 0.43 | 2.25 | 2.05 |
ERA5 | 0.79 | 0.25 | 0.31 | 2.05 | 1.80 |
NCEP-CFSRv2 | 0.79 | 0.43 | 0.46 | 2.21 | 1.98 |
2014 | Correlation Coefficient | Mean Bias, m/s | Median Bias, m/s | RMSE, m/s | STD, m/s |
---|---|---|---|---|---|
2014 13 km | 0.60 | 0.46 | 0.44 | 2.79 | 2.68 |
2014 3 km | 0.60 | 0.46 | 0.43 | 2.82 | 2.73 |
2014 13 km sn | 0.77 | 0.39 | 0.41 | 2.06 | 1.91 |
2014 3 km sn | 0.72 | 0.31 | 0.33 | 2.25 | 2.16 |
2014 13 km sn dt | 0.77 | 0.36 | 0.35 | 2.10 | 1.95 |
2014 3 km sn dt | 0.74 | 0.31 | 0.31 | 2.24 | 2.15 |
2014 3 km sn large | 0.74 | 0.29 | 0.30 | 2.22 | 2.14 |
Reanalyses | |||||
ERA-Interim | 0.79 | 0.39 | 0.40 | 1.82 | 1.72 |
ERA5 | 0.78 | 0.38 | 0.41 | 1.75 | 1.51 |
NCEP-CFSRv2 | 0.69 | 0.52 | 0.51 | 2.10 | 1.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platonov, V.; Kislov, A. High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea). Atmosphere 2020, 11, 1062. https://doi.org/10.3390/atmos11101062
Platonov V, Kislov A. High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea). Atmosphere. 2020; 11(10):1062. https://doi.org/10.3390/atmos11101062
Chicago/Turabian StylePlatonov, Vladimir, and Alexander Kislov. 2020. "High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea)" Atmosphere 11, no. 10: 1062. https://doi.org/10.3390/atmos11101062
APA StylePlatonov, V., & Kislov, A. (2020). High-Resolution COSMO-CLM Modeling and an Assessment of Mesoscale Features Caused by Coastal Parameters at Near-Shore Arctic Zones (Kara Sea). Atmosphere, 11(10), 1062. https://doi.org/10.3390/atmos11101062