VARMA-EGARCH Model for Air-Quality Analyses and Application in Southern Taiwan
Abstract
:1. Introduction
2. Experimental Method and Methodology
2.1. Selection of Air Quality Monitoring Stations
2.2. Data Selection and Compilation
2.3. ARIMA Modeling
2.4. ARMA-EGARCH Modeling
2.5. Setting of the Model
2.5.1. Fat Tail Test
2.5.2. Ljung–Box Sequence Test
2.5.3. Examination of the ARCH Effectiveness
2.5.4. Impact Response Analyses
3. Results and Discussion
3.1. Application of the Results of Factor Analysis
3.2. Simulations of the Photochemical Pollution Factor with Models
3.2.1. Analysis of the Basic Properties of the Three Air Pollutants
3.2.2. Examination of ARCH Effectiveness
3.2.3. Ljung–Box Sequential Examination
3.2.4. Choosing the Best EGARCH Model
3.3. Simulation Results of the Photochemical Pollution Factor VARMA (1,1)-EGARCH (1,1) Model
3.4. The Predictive Power of the VARMA (1,1)-EGARCH (1,1) Model on the Three Air Pollutants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EPA (Environmental Protection Agency). Measuring Air Quality: The Pollutant Standards Index; EPA 451/K-94-001; EPA: Washington, DC, USA, 1994.
- Hsu, C.H.; Cheng, F.Y. Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res. 2019, 19, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Balram, D.; Lian, K.Y.; Sebastian, N. Air quality warning system based on a localized PM2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection. Ecotoxicol. Environ. Saf. 2019, 182, 109386. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W. Effects of Automobile Tailpipe in the Hsuehshan Tunnel of on the Air Quality of Neighboring Areas Using ADMS Model. Master’s Thesis, Environmental Engineering Research Institute, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2009. (In Chinese). [Google Scholar]
- Kuo, S.L.; Wu, E.M.Y. Highway tunnel air quality assessment using multivariate statistical classification via factor, cluster, and discriminant analysis. Int. J. Eng. Technol. 2018, 7, 287–291. [Google Scholar]
- Balram, D.; Lian, K.Y.; Sebastian, N. A novel soft sensor based warning system for hazardous ground-level ozone using advanced damped least squares neural network. Ecotoxicol. Environ. Saf. 2020, 205, 111168. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Klemm, O.; Lokys, H.L.; Lin, N.H. Trends of fog and visibility in Taiwan: Climate change or air quality improvement? Aerosol Air Qual. Res. 2019, 19, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Autoregressive conditional density estimation. Int. Econ. Rev. 1994, 35, 705–730. [Google Scholar] [CrossRef]
- Wang, K.L.; Fawson, C.; Barrett, C.B.; McDonald, J. A flexible parametric GARCH model with an application to exchange rates. J. Appl. Econ. 2001, 16, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Arestis, P.; Caporale, G.; Cipollini, A. Testing for Financial Contagion between developed and emerging markets during the 1997 East Asian crisis. Int. J. Finance Econ. 2005, 10, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications—With R Examples; Springer Science Business Media, LLC: Heidelberg, Germany, 2006. [Google Scholar]
- Brockwell, J.B.; Davis, R.A. Introduction to Time Series and Forecasting; Springer Inc.: New York, NY, USA, 2002. [Google Scholar]
- Kumar, U.; Prakash, A.; Jain, V.K. A multivariate time series approach to study the interdependence among O3, NOx and VOCs in ambient urban atmosphere. Environ. Model. Assess. 2008, 14, 631–643. [Google Scholar] [CrossRef]
- Engle, R. Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 1982, 50, 987–993. [Google Scholar] [CrossRef]
- Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwartz, G.E. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Kuo, S.L.; Ho, C.L. The assessment of time series for an entire air quality control district in southern Taiwan using GARCH model. Int. J. Eng. Technol. 2018, 7, 119–124. [Google Scholar]
- Lee, C.L.; Lee, R.K.; Kao, Y.M. Lagrange Multiplier Optimization Synthesis of Long-Period Fiber Gratings. In Proceedings of the 2007 Asia Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, 17–19 October 2007. [Google Scholar]
- Forbes, K.; Rigobon, R. No contagion, only interdependence: Measuring stock market co-movements. J. Financ. 2002, 5, 2223–2261. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Items | O3 (ppb) | PM10 (μg/m3) | NO2 (ppb) |
---|---|---|---|
Mean | 35.7 | 83 | 63.1 |
Median | 32.6 | 78 | 59.3 |
Maximum | 204 | 427 | 488 |
Minimum | 8.6 | 20 | 16.6 |
Std. Dev. | 0.8 | 0.8 | 0.4 |
Kurtosis | 7.5 | 11.7 | 6.1 |
Skewness | 0.8 | 2.3 | 4.3 |
Jarque–Bera | 2518 | 2054 | 796 |
Probability | 0.0 | 0.0 | 0.0 |
Sum Sq. Dev. | 112.6 | 124.4 | 88.3 |
Observations | 420 | 420 | 420 |
Q | O3 (ppb) | PM10 (μg/m3) | NO2 (ppb) | Critical Value |
---|---|---|---|---|
(Lagged Variables) | (TR2) | (TR2) | (TR2) | |
1 | 15.57 | 356.21 | 140.36 | 3.84 |
2 | 18.98 | 367.29 | 154.22 | 5.99 |
3 | 21.22 | 381.00 | 163.87 | 7.82 |
4 | 24.58 | 390.54 | 179.78 | 9.49 |
5 | 30.16 | 393.58 | 192.65 | 11.07 |
6 | 33.20 | 402.63 | 216.60 | 12.59 |
7 | 36.61 | 411.29 | 231.47 | 14.07 |
8 | 38.14 | 416.85 | 249.54 | 15.51 |
9 | 39.52 | 438.20 | 266.33 | 16.92 |
10 | 42.65 | 468.13 | 289.51 | 19.68 |
L-BQ (K) | O3 (ppb) | PM10 (μg/m3) | NO2 (ppb) | Critical Value |
---|---|---|---|---|
1 | 1.92 | 0.84 | 0.57 | 3.84 |
2 | 2.62 | 2.01 | 0.95 | 5.99 |
3 | 5.18 | 3.36 | 2.64 | 7.82 |
4 | 6.79 | 5.69 | 4.26 | 9.49 |
5 | 9.00 | 7.17 | 6.61 | 11.07 |
6 | 10.48 | 8.60 | 8.47 | 12.59 |
7 | 12.46 | 11.43 | 10.69 | 14.07 |
8 | 12.89 | 12.52 | 11.12 | 15.51 |
9 | 13.62 | 13.77 | 12.06 | 16.92 |
10 | 16.31 | 15.95 | 12.95 | 18.31 |
EGARCH Type | EGARCH (0.1) | EGARCH (0.2) | EGARCH (1,1) | EGARCH (2,1) | |||||
---|---|---|---|---|---|---|---|---|---|
Vector Model | AIC | SC | AIC | SC | AIC | SC | AIC | SC | |
VARMA (1,0) | 8.121 | 8.136 | 8.053 | 8.062 | 7.713 | 8.020 | 7.952 | 7.993 | |
VARMA (2,0) | 8.054 | 8.101 | 7.959 | 8.016 | 7.620 | 7.795 | 8.051 | 8.071 | |
VARMA (0,1) | 8.012 | 8.077 | 7.994 | 8.023 | 7.602 | 7.793 | 7.952 | 8.032 | |
VARMA (0,2) | 7.953 | 7.998 | 7.921 | 7.965 | 7.577 | 7.708 | 7.893 | 8.011 | |
VARMA (1,1) | 7.902 | 7.926 | 7.865 | 7.915 | 7.523 | 7.542 | 7.621 | 7.779 | |
VARMA (2,1) | 7.883 | 7.903 | 7.839 | 7.868 | 7.531 | 7.603 | 7.659 | 7.724 |
Vector Model | a0 | a1 | a2 | b0 | b1 | b2 | c0 | c1 | c2 | d1 | α0 | α1 | α2 | β1 | γ1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VARMA (1,0) | 0.96 | −2.31 | 3.143 | 1.03 | 0.51 | 0.62 | −1.12 | 0.18 | 2.63 | −1.69 | 0.56 | 0.26 | −0.163 | ||
t-statistic | 1.24 | 0.96 | −0.77 | 2.14 | −3.14 | −1.55 | 0.78 | 0.66 | 0.53 | 3.22 | 1.16 | 4.55 | 4.42 | ||
VARMA (2,0) | −3.44 | 1.99 | 0.87 | 3.46 | −2.59 | 0.97 | −1.52 | 0.53 | 1.32 | 0.64 | 2.21 | 1.58 | 0.33 | −0.035 | |
t-statistic | −1.25 | 2.55 | 1.57 | −1.96 | 1.41 | 2.64 | 0.32 | 1.63 | 0.09 | −3.11 | 1.14 | −0.76 | 2.14 | 2.56 | |
VARMA (0,1) | 1.97 | 1.14 | 1.25 | 2.14 | 0.16 | 3.02 | 1.19 | 1.84 | 3.21 | −0.34 | 1.03 | 2.3 | −0.321 | ||
t-statistic | 0.94 | −3.63 | −0.88 | 2.45 | −1.16 | 2.46 | 1.51 | −0.71 | 2.65 | 0.09 | −2.03 | 1.99 | 1.93 | ||
VARMA (0,2) | 2.01 | 0.96 | 3.03 | 1.13 | 0.06 | 1.59 | −0.16 | 0.92 | 0.56 | 0.31 | 1.55 | ||||
t-statistic | 2.51 | 0.94 | 2.17 | 0.88 | −2.12 | 3.12 | 1.22 | 1.17 | −2.77 | −0.26 | 4.02 | ||||
VARMA (2,1) | −0.29 | 2.016 | 2.23 | 2.31 | 1.3 | 3.01 | −0.63 | 1.59 | 0.86 | 2.07 | −0.17 | 2.03 | 1.14 | −1.67 | |
t-statistic | 1.38 | 3.46 | −1.65 | −1.10 | 2.05 | 1.16 | 1.54 | 2.62 | 1.14 | 2.63 | −0.33 | −1.68 | 0.82 | 2.31 | |
VARMA (1,1) | 1.37 | 1.13 | 5.14 | −2.42 | 0.07 | 3.41 | 0.96 | 2.19 | 0.17 | 1.56 | 5.68 | 0.71 | 0.52 | 5.26 | −0.082 |
t-statistic | 0.31 | 7.03 | 1.14 | −0.75 | 2.56 | 2.04 | 0.32 | 3.79 | 2.92 | 3.41 | 3.02 | 2.65 | 0.7 | 8.16 | 3.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, E.M.-Y.; Kuo, S.-L. VARMA-EGARCH Model for Air-Quality Analyses and Application in Southern Taiwan. Atmosphere 2020, 11, 1096. https://doi.org/10.3390/atmos11101096
Wu EM-Y, Kuo S-L. VARMA-EGARCH Model for Air-Quality Analyses and Application in Southern Taiwan. Atmosphere. 2020; 11(10):1096. https://doi.org/10.3390/atmos11101096
Chicago/Turabian StyleWu, Edward Ming-Yang, and Shu-Lung Kuo. 2020. "VARMA-EGARCH Model for Air-Quality Analyses and Application in Southern Taiwan" Atmosphere 11, no. 10: 1096. https://doi.org/10.3390/atmos11101096
APA StyleWu, E. M. -Y., & Kuo, S. -L. (2020). VARMA-EGARCH Model for Air-Quality Analyses and Application in Southern Taiwan. Atmosphere, 11(10), 1096. https://doi.org/10.3390/atmos11101096