Using Seasonal Forecast as an Adaptation Strategy: Gender Differential Impact on Yield and Income in Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theorical Framework for Impact Assesment
2.2. Empirical Model
2.3. Study Site, Sampling and Data
3. Results
3.1. Descriptive Statistics
3.1.1. Socioeconomic Characteristics
3.1.2. Arable Land and Farm Size
3.1.3. Yield and Income Comparison
- Yield comparison
- Income comparison
3.1.4. Access and Use of SF
3.2. Impact of the Use of SF on Main Crop Yields
3.2.1. Impact of the Use of SF on Agricultural Income
3.2.2. Determinants of the Use of Seasonal Forecast
4. Discussion
4.1. Impact of the Use of SF on Crops and Income
4.2. Gendered Impact of the Use of SF
4.3. Determinants and Limits for the Uptake of SF
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carr, E.R.; Fleming, G.; Kalala, T. Understanding Women’s Needs for Weather and Climate Information in Agrarian Settings: The Case of Ngetou Maleck, Senegal. Weather Clim. Soc. 2016, 8, 247–264. [Google Scholar] [CrossRef]
- Duong, M.T.; Smith, A.; Le, T.T.; Simelton, E.; Coulier, M. Gender-Differences in Agro-Climate Information Services (Findings from ACIS Baseline Survey in Ha Tinh and Dien Bien Provinces, Vietnam); CCAFS Info Note; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2017. [Google Scholar]
- Jost, C.; Kyazze, F.; Naab, J.; Neelormi, S.; Kinyangi, J.; Zougmore, R.; Aggarwal, P.; Bhatta, G.; Chaudhury, M.; Tapio-Bistrom, M.-L.; et al. Understanding gender dimensions of agriculture and climate change in smallholder farming communities. Clim. Dev. 2016, 8, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Partey, S.T.; Dakorah, A.D.; Zougmoré, R.B.; Ouédraogo, M.; Nyasimi, M.; Nikoi, G.K.; Huyer, S. Gender and climate risk management: Evidence of climate information use in Ghana. Clim. Chang. 2018, 158, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.R.; Hurd, H.B.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Phil. Trans. R. Soc. 2005, 360, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, M.M. The Climate Change Impact on Crop Yield in Sub-Saharan African Countries Production Function Approach; Howard University: Washington, DC, USA, 2017. [Google Scholar]
- Blanc, E. The Impact of Climate Change on Crop Yields in Sub-Saharan Africa. Am. J. Clim. Chang. 2012, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jalloh, A.; Nelson, G.C.; Thomas, S.T.; Zougmore, R.; Roy-Macauley, H. West African Agriculture and Climate Change: A Comprehensive Analysis; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- FAOSTAT. Base de Données Statistiques de la FAO. Disponible à L’adresse Suivante: Faostat.Fao.org.; FAOSTAT: Rome, Italy, 2005. [Google Scholar]
- Ouedraogo, I.; Diouf, N.S.; Ouédraogo, M.; Ndiaye, O.; Zougmoré, R. Closing the Gap between Climate Information Producers and Users: Assessment of Needs and Uptake in Senegal. Climate 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Roudier, P.; Muller, B.; d’Aquino, P.; Roncoli, C.; Soumaré, M.A.; Batté, L.; Sultan, B. The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal. Clim. Risk Manag. 2014, 2, 42–55. [Google Scholar] [CrossRef]
- Sultan, B.; Roudier, P.; Quirion, P. Les bénéfices de la prévision saisonnière pour l’agriculture en Afrique de l’Ouest. Sécheresse 2013, 24, 304–313. [Google Scholar] [CrossRef]
- Roncoli, C.; Ingram, K.; Kirshen, P. Reading the Rains: Local Knowledge and Rainfall Forecasting in Burkina Faso. Soc. Nat. Resour. 2002, 15, 409–427. [Google Scholar] [CrossRef]
- Klopper, E. The use of seasonal forecasts in South Africa during the 1997/98 rainfall season. Water SA 1999, 25, 311–316. [Google Scholar]
- Rauch, M.; Bliefernicht, J.; Laux, P.; Salack, S.; Waongo, M.; Kunstmann, H. Seasonal Forecasting of the Onset of the Rainy Season in West Africa. Atmosphere 2019, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Vogel, C.; O’Brien, K. Who can eat information? Examining the effectiveness of seasonal climate forecasts and regional climate-risk management strategies. Clim. Res. 2006, 33, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.M.; Dieng, M. Impact Assessment of Communicating Seasonal Climate Forecasts in Kaffrine; Final Report for CCAFS West Africa Regional Program; Thies and Fatick (Niakhar) Regions in Senegal: Diourbel, Senegal; Louga, Senegal, 2015; p. 70. [Google Scholar]
- Meza, F.J.; Hansen, J.W.; Osgood, D. Economic Value of Seasonal Climate Forecasts for Agriculture: Review of Ex-Ante Assessments and Recommendations for Future Research. J. Appl. Meteorol. Clim. 2008, 47, 1269–1286. [Google Scholar] [CrossRef]
- Ndeye Seynabou, D.; Leclerc, G.; Barbie, B.; Fall, S. The impact of seasonal forecast on farmer’s strategic choices in the lake Guiers area in northern Senegal. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 392018. [Google Scholar]
- Ochieng, R.; Recha, C.; Bebe, B.O. Enabling Conditions for Improved Use of Seasonal Climate Forecast in Arid and Semi-Arid Baringo County—Kenya. Open Access Libr. J. 2017, 4, 1–15. [Google Scholar] [CrossRef]
- Hansen, J.W.; Mason, S.J.; Sun, L.; Tall, A. Review of seasonal climate forecasting for agriculture in sub-saharan africa. Exp. Agric. 2011, 47, 205–240. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.P.C.; Hansen, J.; Njiru, E.; Githungo, W.N.; Oyoo, A. Impacts of Seasonal Climate Communication Strategies on Farm Management and Livelihoods in Wote, Kenya; CCAFS Working Paper 42; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2015. [Google Scholar]
- Blench, R. Forecasts and farmers: Exploring the limitations. In Coping with Climate Variability: The Use of Seasonal Climate Forecasts in Southern Africa; O’Brien, K., Vogel, C., Eds.; Ashgate: Aldershot, UK, 2003; pp. 59–71. [Google Scholar]
- O′Brien, K.; Sygna, L.; Næss, L.; Kingamkono, R.; Hochobeb, B. Is Information Enough? User Responses to Seasonal Climate Forecasts in Southern Africa; Report 2000: 03; CICERO: Oslo, Norway, 2000. [Google Scholar]
- USAID. Gender Issues and Agriculture in Senegal; USAID: Washington, DC, USA, 2010.
- Null, N. The State of Food and Agriculture 2010–2011: Women in Agriculture, Closing the Gender Gap for Development; FAO: Rome, Italy, 2011. [Google Scholar]
- McOmber, C.; Panikowski, A.; McKune, S.L.; Bartels, W.-L.; Russo, S. Investigating Climate Information Services through a Gendered Lens; CCAFS Working Paper no. 42; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013; p. 51. Available online: www.ccafs.cgiar.org (accessed on 22 February 2018).
- Rubin, D.B. Estimating Causal Effects of Treatments in Randomized and Non-randomized Studies. J. Educ. Psychol. 1974, 66, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Sianesi, B. An Evaluation of the Swedish System of Active Labour Market Programs in the 1990s. Rev. Econ. Stat. 2004, 86, 133–155. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Estimating Outcome Distributions for Compliers in Instrumental Variable Models. Rev. Econ. Stud. 1997, 64, 555–574. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A. Semi-parametric Instrumental Variable Estimation of Treatment Response Models. J. Econ. 2003, 113, 231–263. [Google Scholar] [CrossRef]
- Imbens, G.; Angrist, J. Identification and estimation of local average treatment effects. Econometrica 1994, 62, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.J.; Vytlacil, E.J. Structural Equations, Treatment effects and Econometric Policy Evaluation. Econometrica 2005, 72, 669–738. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Lee, M.J. Micro-Econometrics for Policy, Program and Treatment Effects. Advanced Texts in Econometrics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Amegnaglo, C.J.; Anaman, K.A.; Mensah-Bonsu, A.; Onumah, E.E.; Amoussouga Gero, F. Contingent valuation study of the benefits of seasonal climate forecasts for maize farmers in the Republic of Benin, West Africa. Clim. Serv. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Diouf, N.S.; Ouedraogo, I.; Zougmoré, R.; Ouedraogo, M.; Partey, S.T.; Gumucio, T. Factors influencing gendered access to climate information services for farming in Senegal. Gend. Technol. Dev. 2019, 23, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Ingram, T.K.; Roncoli, C.; Kirshen, P. Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric. Syst. 2002, 74, 331–349. [Google Scholar] [CrossRef]
- Cherotich, V.K.; Saidu, O.; Omedo, B.B. Access to climate change information and support services by the vulnerable groups in semi-arid Kenya for adaptive capacity development. Afr. Crop Sci. J. 2012, 20, 12. [Google Scholar]
- Ouédraogo, M.; Barry, S.; Zougmoré, R.; Partey, S.; Somé, L.; Baki, G. Farmers’ Willingness to Pay for Climate Information Services: Evidence from Cowpea and Sesame Producers in Northern Burkina Faso. Sustainability 2018, 10, 611. [Google Scholar] [CrossRef] [Green Version]
- Abebaw, D.; Haile, M.G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Houessionon, P.; Zougmoré, R.B.; Partey, S.T. Uptake of Climate-Smart Agricultural Technologies and Practices: Actual and Potential Adoption Rates in the Climate-Smart Village Site of Mali. Sustainability 2019, 11, 4710. [Google Scholar] [CrossRef] [Green Version]
- Diagne, A.; Midingoyi, S.G.; Kinkingninhoun-Medagbe, F.M. Impact of NERICA Adoption on Rice Yield: Evidence from West Africa. In An African Green Revolution; Otsuka, K., Larson, D., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Cunguara, B.; Darnhofer, I. Assessing the impact of improved agricultural technologies on household income in rural Mozambique. Food Policy 2011, 36, 378–390. [Google Scholar] [CrossRef]
- FAO. Countrystat. Available online: http://senegal.countrystat.org/ (accessed on 24 June 2020).
- CIAT; BFS/USAID. Climate-Smart Agriculture in Senegal. CSA Country Profiles for Africa Series; International Center for Tropical Agriculture (CIAT); Bureau for Food Security, United States Agency for International Development (BFS/USAID): Washington, DC, USA, 2016.
- FAO. FAOSTAT Senegal. 2016. Available online: http://faostat3.fao.org/home/E2016 (accessed on 1 June 2020).
- Ziervogel, G.; Opere, A. Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in the agricultural sector: Lessons from participatory action research in sub-Saharan Africa. Clim. Chang. Adapt. Afr. Learn. Pap. Ser. 2010, 1, 1–24. [Google Scholar]
- Lemos, M.C.; Dilling, L. Equity in forecasting climate: Can science save the world’s poor? Sci. Public Policy 2007, 34, 109–116. [Google Scholar] [CrossRef]
- Patt, A.; Suarez, P.; Gwata, C. Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proc. Natl. Acad. Sci. USA 2005, 102, 12623. [Google Scholar] [CrossRef] [Green Version]
- Dabire, W.P.I.; Barbier, B.; Andrieu, N. Evaluation ex ante de la prévision saisonnière climatique en petit paysannat burkinabé. Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux 2011, 64, 43. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.W. Realizing the potential benefits of climate prediction to agriculture: Issues, approaches, challenges. Agric. Syst. 2002, 74, 309–330. [Google Scholar] [CrossRef]
- Tarhule, A.; Lamb, P.J. Climate Research and Seasonal Forecasting for West Africans: Perceptions, Dissemination, and Use?: Perceptions, Dissemination, and Use? Bull. Am. Meteorol. Soc. 2003, 84, 1741–1760. [Google Scholar] [CrossRef]
- Soumaré, H. The Integration of Gender Concerns into Agricultural Censuses: A case study of Senegal. In Agricultural Census and Gender: Lessons Learned in Africa; FAO: Rome, Italy, 2005. [Google Scholar]
- Niang, M.; Seydi, B.; Hathie, I. Etude de la Consommation des Céréales de Base au Sénégal. Feed the Future Naatal Mbay-USAID; IPAR: Menlo Park, CA, USA, 2017; p. 128. [Google Scholar]
- Gumucio, T.; Hansen, J.; Huyer, S.; Huysen, V.T.; Schwager, S. Identifying Pathways for More Gender-Sensitive Communication Channels in Climate Services; Info Note; CCAFS: Copenhagen, Denmark, 2018. [Google Scholar]
- Zongo, B.; Diarra, A.; Barbier, B.; Zorom, M.; Yacouba, H.; Dogot, T. Farmers’ Perception and Willingness to Pay for Climate Information in Burkina Faso. J. Agric. Sci. 2015, 8, 175. [Google Scholar] [CrossRef] [Green Version]
Variables | Description |
---|---|
Age | Age of the farmer |
Marital status | Dummy = 1 if the farmer is married |
Formal education | Dummy = 1 if the farmer has been in formal school |
Experience as member of an association | No. of years of experience as member of association |
Member of farmers’ organization | Dummy = 1 if the farmer is member of farmer’s organization |
No. of years of experience as a farmer | No. of years of experience as farmer |
Relation with project/ Non-governmental organization (NGO) | Dummy = 1 if the farmer has a relation with project/NGO |
Relation with agriculture extension services | Dummy = 1 if the farmer has a relation with technical services |
Microfinance | Dummy = 1 if the farmer has a relation with microfinance institution |
Training in climate change | Dummy = 1 if the farmer has been trained on climate change in 2018 |
Mobile phone | Dummy = 1 if the farmer owns mobile phone |
Radio | Dummy = 1 if the farmer owns radio |
Television | Dummy = 1 if the farmer owns television |
No. of crops | No. of crops practiced |
Household size | Household size |
Level of confidence | Dummy = 1 if the farmer is very confident about the Met Services |
Region | Male | Female | Total |
---|---|---|---|
KAFFRINE | 165 | 94 | 259 |
KAOLACK | 111 | 3 | 114 |
KOLDA | 370 | 238 | 608 |
SEDHIOU | 70 | 212 | 282 |
ZIGUINCHOR | 128 | 109 | 237 |
Total | 844 | 656 | 1500 |
Sex | Male | Female | All | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Users of Seasonal Forecast | Yes | No | All | Yes | No | All | Yes | No | All | |
Farmers | N | 73 | 541 | 614 | 41 | 464 | 505 | 114 | 1014 | 1128 |
% | 11.89 | 88.11 | 56.04 | 8.12 | 91.88 | 43.96 | 10.11 | 89.89 | 100 | |
Head of household #++ | Yes | 84.93 | 88.17 | 87.79 | 48.78 | 33.41 | 34.65 | 71.93 | 62.89 | 63.81 |
Age | Under 30 years | 1.37 | 5.91 | 5.37 | 9.76 | 11.64 | 11.49 | 4.39 | 8.56 | 8.13 |
Between 30 and 40 years | 19.18 | 21.07 | 20.85 | 14.63 | 26.08 | 25.15 | 17.54 | 23.38 | 22.79 | |
Between 40 and 50 years | 26.03 | 27.91 | 27.69 | 24.39 | 25.65 | 25.54 | 25.44 | 26.87 | 26.72 | |
Between 50 and 60 years | 39.73 | 28.28 | 29.64 | 36.59 | 28.23 | 28.91 | 38.6 | 28.26 | 29.31 | |
Over 60 years | 13.7 | 16.82 | 16.45 | 14.63 | 8.41 | 8.91 | 14.04 | 12.94 | 13.05 | |
Ethnicity *# | Wolof | 27.4 | 21.81 | 22.48 | 12.2 | 9.91 | 10.1 | 21.93 | 16.32 | 16.89 |
Peulh | 57.53 | 56.01 | 56.19 | 46.34 | 40.09 | 40.59 | 53.51 | 48.66 | 49.15 | |
Sérère | 1.37 | 0.92 | 0.98 | 4.88 | 1.08 | 1.39 | 2.63 | 1 | 1.16 | |
Diola | 6.85 | 13.12 | 12.38 | 19.51 | 16.16 | 16.44 | 11.4 | 14.53 | 14.21 | |
Mandingue | 0 | 3.88 | 3.42 | 7.32 | 23.28 | 21.98 | 2.63 | 12.84 | 11.8 | |
Marital status ###+++ | Married | 97.26 | 97.6 | 97.56 | 58.54 | 84.48 | 82.38 | 83.33 | 91.54 | 90.71 |
Level of instruction ###+++ | None | 21.92 | 29.76 | 28.83 | 39.02 | 63.79 | 61.78 | 28.07 | 45.47 | 43.7 |
Arab/Coran | 46.58 | 43.81 | 44.14 | 17.07 | 16.38 | 16.44 | 35.96 | 31.14 | 31.64 | |
Literate in a foreign language | 6.85 | 5.18 | 5.37 | 17.07 | 5.39 | 6.34 | 10.53 | 5.27 | 5.81 | |
Primary school | 12.33 | 13.68 | 13.52 | 19.51 | 11.21 | 11.88 | 14.91 | 12.54 | 12.78 | |
Secondary middle school | 6.85 | 4.07 | 4.4 | 2.44 | 1.94 | 1.98 | 5.26 | 3.08 | 3.31 | |
Number of years of agricultural experience *##+++ | Less than 10 | 2.74 | 3.14 | 3.09 | 4.88 | 8.62 | 8.32 | 3.51 | 5.62 | 5.41 |
Between 10 and 20 | 8.22 | 17.74 | 16.61 | 17.07 | 24.78 | 24.16 | 11.4 | 20.81 | 19.86 | |
Between 20 and 30 | 45.21 | 48.24 | 47.88 | 39.02 | 47.63 | 46.93 | 42.98 | 47.53 | 47.07 | |
More than 30 | 43.84 | 30.87 | 32.41 | 39.02 | 18.97 | 20.59 | 42.11 | 26.04 | 27.66 | |
Principal activity *##+++ | Farming/breeding | 94.52 | 98.15 | 97.72 | 90.24 | 98.28 | 97.62 | 92.98 | 98.21 | 97.68 |
Member of an association ***###+++ | Yes | 97.26 | 77.08 | 79.48 | 100 | 87.72 | 88.71 | 98.25 | 81.99 | 83.65 |
Relation with a project | Yes | 34.25 | 41.59 | 40.72 | 48.78 | 50.65 | 50.5 | 39.47 | 45.77 | 45.13 |
Relation with the National Agricultural Research Institute #++ | Yes | 1.37 | 0.18 | 0.33 | 2.44 | 0 | 0.2 | 1.75 | 0.1 | 0.27 |
Level of confidence in the weather forecast ***+++ | Very confident | 36.99 | 47.5 | 46.25 | 36.59 | 29.53 | 30.1 | 36.84 | 39.2 | 38.96 |
Just confident | 34.25 | 33.46 | 33.55 | 34.15 | 40.3 | 39.8 | 34.21 | 36.62 | 36.37 | |
Little confident | 15.07 | 15.53 | 15.47 | 19.51 | 25.22 | 24.75 | 16.67 | 20 | 19.66 | |
Not at all confident | 13.7 | 3.51 | 4.72 | 9.76 | 4.96 | 5.35 | 12.28 | 4.18 | 5 | |
Mobile phone possession | Yes | 95.89 | 95.56 | 95.6 | 82.93 | 75.22 | 75.84 | 91.23 | 86.17 | 86.68 |
A member of the house watches TV ###++ | Yes | 53.42 | 48.61 | 49.19 | 73.17 | 50.86 | 52.67 | 60.53 | 49.65 | 50.76 |
A member of the house listens to the radio ##+++ | Yes | 95.89 | 92.05 | 92.51 | 97.56 | 83.41 | 84.55 | 96.49 | 88.06 | 88.92 |
Training in climate change ***###+++ | Yes | 45.21 | 8.87 | 13.19 | 41.46 | 6.9 | 9.7 | 43.86 | 7.96 | 11.62 |
Sex | Modality | N | Mean | Standard Deviation | |
---|---|---|---|---|---|
Age | Male | Yes | 73 | 49.44 | 10.99 |
No | 541 | 47.84 | 12.55 | ||
All | 614 | 48.03 | 12.38 | ||
Difference | 1.60 | ||||
Female | Yes | 41 | 48.05 | 12.87 | |
No | 464 | 43.85 | 12.57 | ||
All | 505 | 44.19 | 12.63 | ||
Difference | 4.201798 ** | ||||
Size of household | Male | Yes | 73 | 17.01 | 9.05 |
No | 541 | 16.13 | 9.38 | ||
All | 614 | 16.24 | 9.34 | ||
Difference | 0.88 | ||||
Female | Yes | 41 | 14.66 | 7.85 | |
No | 464 | 15.41 | 8.03 | ||
All | 505 | 15.35 | 8.01 | ||
Difference | −0.76 | ||||
Years of experience | Male | Yes | 73 | 29.99 | 10.72 |
No | 541 | 27.72 | 11.83 | ||
All | 614 | 27.99 | 11.72 | ||
Difference | 2.269111 * | ||||
Female | Yes | 41 | 27.61 | 12.62 | |
No | 464 | 22.99 | 11.17 | ||
All | 505 | 23.36 | 11.35 | ||
Difference | 4.620532 *** |
Sex | Use of SF | N | Mean | Standard Deviation | |
---|---|---|---|---|---|
Available area | Male | Yes | 73 | 7.186986 | 12.23176 |
No | 541 | 6.100129 | 6.721459 | ||
All | 614 | 6.229349 | 7.582548 | ||
Difference | 1.086857 | ||||
Female | Yes | 41 | 4.386585 | 6.537048 | |
No | 464 | 2.711207 | 3.738648 | ||
All | 505 | 2.847228 | 4.054841 | ||
Difference | 1.675378 *** | ||||
Cultivated area | Male | Yes | 73 | 6.440411 | 12.24563 |
No | 541 | 5.055823 | 5.472056 | ||
All | 614 | 5.22044 | 6.647686 | ||
Difference | 1.384588 ** | ||||
Female | Yes | 41 | 3.565854 | 4.808761 | |
No | 464 | 2.047274 | 2.284699 | ||
All | 505 | 2.170564 | 2.608225 | ||
Difference | 1.51858 *** |
Crops | Gender | Users of Seasonal Forecast | N | Mean (kg/ha) | Standard Deviation |
---|---|---|---|---|---|
Millet | Male | Yes | 46 | 924.2 | 504.7 |
No | 372 | 721.4 | 494.7 | ||
All | 418 | 743.7 | 499.2 | ||
Female | Yes | 13 | 726.9 | 378.4 | |
No | 105 | 725.4 | 453.1 | ||
All | 118 | 725.5 | 444.1 | ||
All | Yes | 59 | 880.8 | 483.8 | |
No | 477 | 722.3 | 485.4 | ||
All | 536 | 739.7 | 487.3 | ||
Sorghum | Male | Yes | 3 | 1467.3 | 1794.6 |
No | 45 | 647.0 | 536.6 | ||
All | 48 | 698.3 | 668.5 | ||
Female | Yes | 0 | |||
No | 10 | 951.2 | 302.7 | ||
All | 10 | 951.2 | 302.7 | ||
All | Yes | 3 | 1467.3 | 1794.6 | |
No | 55 | 702.4 | 513.8 | ||
All | 58 | 741.9 | 626.3 | ||
Maize | Male | Yes | 36 | 910.2 | 994.7 |
No | 272 | 901.8 | 769.2 | ||
All | 308 | 902.7 | 796.9 | ||
Female | Yes | 7 | 757.1 | 806.4 | |
No | 64 | 788.2 | 869.2 | ||
All | 71 | 785.1 | 857.8 | ||
All | Yes | 43 | 885.3 | 959.5 | |
No | 336 | 880.1 | 789.1 | ||
All | 379 | 880.7 | 808.8 | ||
Rice | Male | Yes | 26 | 1151.4 | 1001.6 |
No | 160 | 936.1 | 898.0 | ||
All | 186 | 966.2 | 913.3 | ||
Female | Yes | 33 | 783.2 | 723.3 | |
No | 358 | 652.1 | 515.4 | ||
All | 391 | 663.2 | 536.1 | ||
All | Yes | 59 | 945.4 | 868.9 | |
No | 518 | 739.8 | 669.8 | ||
All | 577 | 760.9 | 694.7 | ||
Groundnut | Male | Yes | 58 | 1118.5 | 620.9 |
No | 436 | 1020.6 | 771.5 | ||
All | 494 | 1032.1 | 755.5 | ||
Female | Yes | 21 | 645.1 | 358.3 | |
No | 169 | 913.6 | 646.7 | ||
All | 190 | 884.0 | 626.5 | ||
All | Yes | 79 | 992.6 | 599.1 | |
No | 605 | 990.7 | 739.8 | ||
All | 684 | 990.9 | 724.6 |
Sex | M | N | Mean (XOF) | Standard Deviation |
---|---|---|---|---|
Male | Non-users | 541 | 140,070.8 | 125,939.4 |
Users | 73 | 167,669.1 | 122,849.3 | |
All | 614 | 143,352 | 125,795.4 | |
Difference | −27,598.3 ** | |||
Female | Non-users | 464 | 130,605 | 120,289.9 |
Users | 41 | 139,953.9 | 182,833 | |
All | 505 | 131,364 | 126,301.7 | |
Difference | −9348.92 | |||
Total | Non-users | 114 | 157,701.4 | 147,062.8 |
Users | 1005 | 135,700.5 | 123,392.6 | |
All | 1119 | 137,941.9 | 126,109 | |
Difference | 22,000.85 | 12,451.28 |
Gender | Statistic | Access to SF | Users of SF ** | ||||
---|---|---|---|---|---|---|---|
Yes | No | All | Yes | No | All | ||
Male | N | 234 | 596 | 830 | 73 | 541 | 614 |
% | 56.93 | 55.7 | 56.04 | 64.04 | 53.83 | 54.87 | |
Female | N | 177 | 474 | 651 | 41 | 464 | 505 |
% | 43.07 | 44.3 | 43.96 | 35.96 | 46.17 | 45.13 | |
All | N | 411 | 1070 | 1481 | 114 | 1005 | 1119 |
% | 27.75 | 72.25 | 100 | 10.19 | 89.81 | 100 |
Crop | Statistics | Sex | Total | |
---|---|---|---|---|
Male | Female | |||
Millet | late | 202.7003 *** | 16.6704 *** | 158.0922 *** |
(0.000000213) | (0.000000636) | (0.000000198) | ||
diffmo | 202.8108 *** | 1.560541 | 158.4683 ** | |
(78.11952) | (110.9722) | (66.40393) | ||
mo_N1 | 924.2391 *** | 726.9231 *** | 880.7627 *** | |
(73.78025) | (101.7092) | (62.56851) | ||
mo_N0 | 721.4284 *** | 725.3625 *** | 722.2944 *** | |
(25.67361) | (44.38536) | (22.24103) | ||
N | 418 | 118 | 536 | |
N1 | 46 | 13 | 59 | |
Nz1 | 410 | 115 | 525 | |
Sorghum | late | 886.527 *** | 878.3913 *** | |
(0.0096732) | (0.0058903) | |||
diffmo | 820.2892 | 764.9812 | ||
(867.949) | (863.7879) | |||
mo_N1 | 1467.333 * | 1467.333 * | ||
(864.1794) | (860.9585) | |||
mo_N0 | 647.0441 *** | 702.3521 *** | ||
(80.80415) | (69.85694) | |||
N | 48 | 58 | ||
N1 | 3 | 3 | ||
Nz1 | 36 | 42 | ||
Maize | late | −105.0478 *** | 210.108 *** | −54.71325 *** |
(0.000000604) | (0.005296) | (0.000000869) | ||
diffmo | 8.430372 | −31.02121 | 5.152838 | |
(170.5127) | (306.4321) | (151.2637) | ||
mo_N1 | 910.1852 *** | 757.1429 *** | 885.2713 *** | |
(163.9917) | (286.2584) | (144.9938) | ||
mo_N0 | 901.7548 *** | 788.1641 *** | 880.1185 *** | |
(46.70464) | (109.347) | (43.09885) | ||
N | 308 | 71 | 379 | |
N1 | 36 | 7 | 43 | |
Nz1 | 353 | 80 | 433 | |
Rice | late | 321.3293 *** | −25.31179 *** | 139.779 *** |
(0.000000204) | (0.000000408) | (0.000000299) | ||
diffmo | 215.319 | 131.0487 | 205.6047 * | |
(206.322) | (127.2601) | (116.1548) | ||
mo_N1 | 1151.372 *** | 783.1818 *** | 945.4349 *** | |
(193.6653) | (124.3038) | (112.3588) | ||
mo_N0 | 936.0526 *** | 652.1331 *** | 739.8302 *** | |
(71.15149) | (27.2708) | (29.45237) | ||
N | 186 | 391 | 577 | |
N1 | 26 | 33 | 59 | |
Nz1 | 205 | 282 | 487 | |
Groundnut | late | 85.57264 *** | −278.0796 *** | −36.6594 *** |
(0.0239357) | (0.000000741) | (0.000000537) | ||
diffmo | 97.904 | −268.5566 *** | 1.935476 | |
(89.02992) | (91.49708) | (73.51857) | ||
mo_N1 | 1118.466 *** | 645.0907 *** | 992.6317 *** | |
(80.98535) | (76.71514) | (67.07537) | ||
mo_N0 | 1020.562 *** | 913.6473 *** | 990.6962 *** | |
(36.98241) | (49.86485) | (30.09774) | ||
N | 494 | 190 | 684 | |
N1 | 58 | 21 | 79 | |
Nz1 | 498 | 169 | 667 |
Parameter | Sex | Total | |
---|---|---|---|
Male | Female | ||
late | 32,397.39 *** | 6181.402 *** | 23,958.69 *** |
(0.0000325) | (0.0001088) | (0.0000422) | |
diffmo | 27,598.3 * | 9,348.923 | 22,000.85 |
(15,294.84) | (28,806.81) | (14,267.06) | |
mo_N1 | 167,669.1 *** | 139,953.9 *** | 157,701.4 *** |
(14,302.91) | (28,259.36) | (13,725.42) | |
mo_N0 | 140,070.8 *** | 130,605 *** | 135,700.5 *** |
(5418.383) | (5589.377) | (3893.842) | |
N | 614 | 505 | 1119 |
N1 | 73 | 41 | 114 |
Nz1 | 625 | 404 | 1029 |
Male | Female | Total | |
---|---|---|---|
Age | 0.0034566 | 0.000378 | 0.0014755 |
(0.0082109) | (0.0110395) | (0.0064131) | |
Marital status | 0.1812215 | 0.3810792 *** | 0.275444 *** |
(0.3216277) | (0.1146524) | (0.0871562) | |
Formal education | 0.0573637 | 0.5526512 ** | 0.26932 ** |
(0.1701313) | (0.2372697) | (0.132962) | |
Member of farmers’ organization | 0.7012365 *** | 0.4330179 | 0.5835314 *** |
(0.2163828) | (0.3008535) | (0.1726379) | |
Experience as farmers | 0.0005645 | 0.0094195 | 0.0063591 |
(0.0086495) | (0.0117617) | (0.0067245) | |
Relation with project/NGO | −0.2798718 * | 0.0128041 | −0.2015533 * |
(0.1510792) | (0.2069646) | (0.1177484) | |
Relation with extension services | 0.5308142 *** | 0.4660759 ** | 0.4868922 *** |
(0.1667767) | (0.2346389) | (0.1326463) | |
Microfinance | 0.3577431 | 0.0113474 | 0.2414714 |
(0.3173143) | (0.3863392) | (0.2309711) | |
Mobile phone | −0.0259562 | −0.0817045 | −0.2101631 |
(0.3436625) | (0.2368866) | (0.183789) | |
Radio | −0.0352541 | 0.6718186 ** | 0.2486221 |
(0.1961114) | (0.3276947) | (0.1572521) | |
No. of crops | −0.0566698 | 0.1878422 | 0.068666 |
(0.0822458) | (0.1243009) | (0.0638056) | |
Household size | −0.0001077 | −0.0167238 | −0.0072855 |
(0.0083762) | (0.0128195) | (0.0069477) | |
Confident in Met Services | −0.0232625 | 0.0018982 | −0.0185195 |
(0.1481973) | (0.1966192) | (0.1151159) | |
Cultivated area | 0.0062862 | 0.0737118 ** | 0.0151248 |
(0.0104398) | (0.0344085) | (0.009668) | |
Constant | −2.001753 *** | −3.567293 *** | −2.503482 *** |
(0.6677693) | (0.7214265) | (0.4097876) | |
No. of observations | 614 | 418 | 1104 |
LR chi2(18) | 34.81 | 41.27 | 69 |
Prob > chi2 | 0.0016 | 0.0002 | 0 |
Pseudo R2 | 0.0777 | 0.1539 | 0.0941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diouf, N.S.; Ouedraogo, M.; Ouedraogo, I.; Ablouka, G.; Zougmoré, R. Using Seasonal Forecast as an Adaptation Strategy: Gender Differential Impact on Yield and Income in Senegal. Atmosphere 2020, 11, 1127. https://doi.org/10.3390/atmos11101127
Diouf NS, Ouedraogo M, Ouedraogo I, Ablouka G, Zougmoré R. Using Seasonal Forecast as an Adaptation Strategy: Gender Differential Impact on Yield and Income in Senegal. Atmosphere. 2020; 11(10):1127. https://doi.org/10.3390/atmos11101127
Chicago/Turabian StyleDiouf, Ndeye Seynabou, Mathieu Ouedraogo, Issa Ouedraogo, Gnalenba Ablouka, and Robert Zougmoré. 2020. "Using Seasonal Forecast as an Adaptation Strategy: Gender Differential Impact on Yield and Income in Senegal" Atmosphere 11, no. 10: 1127. https://doi.org/10.3390/atmos11101127
APA StyleDiouf, N. S., Ouedraogo, M., Ouedraogo, I., Ablouka, G., & Zougmoré, R. (2020). Using Seasonal Forecast as an Adaptation Strategy: Gender Differential Impact on Yield and Income in Senegal. Atmosphere, 11(10), 1127. https://doi.org/10.3390/atmos11101127