Radiation in the Atmosphere—A Hazard to Aviation Safety?
Abstract
:1. Introduction
2. Radiation Sources
2.1. Cosmic Radiation
2.1.1. Galactic Cosmic Radiation
2.1.2. Solar Cosmic Radiation
2.2. Lightning
2.3. Radioactive Goods
2.4. Ultra-Violet Radiation
3. Effects and Hazards
3.1. Health
3.1.1. Cancer
3.1.2. Teratogenicity
3.1.3. Cataracts
3.1.4. Medical Devices
3.2. Avionics
3.3. HF-Communications
4. Mitigation Measures
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Dose Quantities
Appendix A.1. Absorbed Dose
Appendix A.2. Effective Dose
Appendix A.3. Ambient Dose Equivalent
Appendix B. Measuring Equipment
Appendix B.1. Tissue Equivalent Proportional Counters
Appendix B.2. Semiconductor Detectors
Appendix B.3. Neutron Rem Counters
References
- Regener, E.; Pfotzer, G. Vertical Intensity of Cosmic Rays by Threefold Coincidences in the Stratosphere. Nature 1935, 136, 718–719. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Mursula, K.; Kangas, J.; Gvozdevsky, B. On-Line Database of Cosmic Ray Intensities. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; p. 3842. [Google Scholar]
- ICRP. 1990 Recommendations of the International Commission on Radiological Protection—ICRP Publication 60. Ann. ICRP 1991, 21, 1–3. [Google Scholar]
- EURATOM. Council Directive 96/29/EURATOM of 13 May 1996 Laying Down the Basic Safety Standards for Protection of the Health of Workers and the General Public against the Dangers Arising from Ionizing Radiation. Off. J. Eur. Communities 1996, 159, 10–11. [Google Scholar]
- EURATOM. Council Directive 2013/59/EURATOM of 5 December 2013 Laying Down the Basic Safety Standards for Protection of the Health of Workers and the General Public against the Dangers Arising from Exposure to Ionizing Radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Communities 2014, 57, 1–73. [Google Scholar]
- ICRP. P103: The 2007 Recommendations of the International Commission on Radiological Protection; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–332. [Google Scholar]
- ISO. ISO 20785-1:2020 Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 1: Conceptual Basis for Measurements; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- ISO. ISO 20785-2:2020 Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 2: Characterization of Instrument Response; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- ISO. ISO 20785-3:2015 Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 3: Measurements at Aviation Altitudes; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- ISO. ISO 20785-4:2019 Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 4: Validation of Codes; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Federal Aviation Administration. In-Flight Radiation Exposure; Advisory Circular 120-61B. 2014. Available online: https://www.faa.gov/documentlibrary/media/advisory_circular/ac_120-61b.pdf (accessed on 7 December 2020).
- Friedberg, W.; Copeland, K. What aircrews should know about their occupational exposure to ionizing radiation. In Office of Aerospace Medicine Report; DOT/FAA/AM-3/16; 2003. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/0316.pdf (accessed on 7 December 2020).
- Friedberg, W.; Copeland, K. Ionizing radiation in Earth’s atmosphere and in space near Earth. In Office of Aerospace Medicine Report; DOT/FAA/AM-11/; 2011. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201109.pdf (accessed on 7 December 2020).
- Copeland, K. MIRA 2017: A CARI-7 Based Solar Radiation Alert System. In Office of Aerospace Medicine Report; DOT/FAA/AM-18/6; 2018. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201806.pdf (accessed on 7 December 2020).
- NCRP. Preconception and Prenatal Radiation Exposure: Health Effects and Protective Guidance. In NCRP Report No. 174; NCRP: Bethesda, MD, USA, 2013. [Google Scholar]
- Nicholas, J.S.; Copeland, K.A.; Duke, F.E.; Friedberg, W.; O’Brien, K., III. Galactic cosmic radiation exposure of pregnant flight crewmembers. Aviat. Space Environ. Med. 2000, 71, 647–648. [Google Scholar]
- Fishman, G.J.; Bhat, P.N.; Mallozzi, R.; Horack, J.M.; Koshut, T.; Kouveliotou, C.; Pendleton, G.N.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.S.; et al. Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin. Science 1994, 264, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Enoto, T.; Wada, Y.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Sato, M.; Sato, Y.; Nakano, T.; et al. Photonuclear reactions triggered by lightning discharge. Nature 2017, 551, 481–484. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 2004, 87, 171–186. [Google Scholar] [CrossRef]
- Schennetten, K.; Meier, M.M.; Scheibinger, M. Measurement of UV radiation in commercial aircraft. J. Radiol. Prot. 2018, 39, 85–96. [Google Scholar] [CrossRef]
- Hess, V.F. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 1912, XIII, 1084. [Google Scholar]
- Bodewein, L.; Schmiedchen, K.; Dechent, D.; Stunder, D.; Graefrath, D.; Winter, L.; Kraus, T.; Driessen, S. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environ. Res. 2019, 171, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Scenhir Scientific Committee on Emerging Newly Identified Health Risks. Opinion on Potential Health Effects of Exposure to Electromagnetic Fields (EMF); European Comission, DG Health and Food Safety: Luxembourg, 2015; p. 288. [Google Scholar]
- Radio Technical Commission for Aeronautics. RTCA DO-160G. RTCA T4—Environmental Conditions and Test Procedures for Airborne Equipment; Radio Technical Commission for Aeronautics: Washington, DC, USA, 2020. [Google Scholar]
- Copeland, K. Influence of the superposition approximation on calculated effective dose rates from galactic cosmic rays at aerospace-related altitudes. Space Weather. 2015, 13, 401–405. [Google Scholar] [CrossRef]
- Berger, T.; Marsalek, K.; Aeckerlein, J.; Hauslage, J.; Matthiä, D.; Przybyla, B.; Rohde, M.; Wirtz, M. The German Aerospace Center M-42 radiation detector—A new development for applications in mixed radiation fields. Rev. Sci. Instrum. 2019, 90, 125115. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, M.S. Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 2013, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.; Matthiä, D.; Burmeister, S.; Zeitlin, C.; Rios, R.; Stoffle, N.; Schwadron, N.A.; Spence, H.E.; Hassler, D.M.; Ehresmann, B.; et al. Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. J. Space Weather. Space Clim. 2020, 10, 34. [Google Scholar] [CrossRef]
- Matthiä, D.; Meier, M.M.; Reitz, G. Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather 2014, 12, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Pavón-Carrasco, F.J.; Santis, A. The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal. Front. Earth Sci. 2016, 4, 1738. [Google Scholar] [CrossRef] [Green Version]
- Federico, C.A.; Gonçalez, O.L.; Caldas, L.V.E.; Pazianotto, M.T.; Dyer, C.; Caresana, M.; Hands, A. Radiation measurements onboard aircraft in the South Atlantic region. Radiat. Meas. 2015, 82, 14–20. [Google Scholar] [CrossRef]
- Copeland, K. CARI-7A: Development and validation. Radiat. Prot. Dosim. 2017, 175, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, M.M.; Hubiak, M.; Matthia, D.; Wirtz, M.; Reitz, G. Dosimetry at aviation altitudes (2006–2008). Radiat. Prot. Dosim. 2009, 136, 251–255. [Google Scholar] [CrossRef]
- Meier, M.M.; Trompier, F.; Ambrozova, I.; Kubancak, J.; Matthiä, D.; Ploc, O.; Santen, N.; Wirtz, M. CONCORD: Comparison of cosmic radiation detectors in the radiation field at aviation altitudes. J. Space Weather. Space Clim. 2016, 6, A24. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.M.; Copeland, K.; Matthiä, D.; Mertens, C.J.; Schennetten, K. First Steps Toward the Verification of Models for the Assessment of the Radiation Exposure at Aviation Altitudes During Quiet Space Weather Conditions. Space Weather. 2018, 16, 1269–1276. [Google Scholar] [CrossRef]
- Burch, J.L. The Fury of Space Storms. Sci. Am. 2001, 284, 86–94. [Google Scholar] [CrossRef]
- Smart, D.F.; Shea, M.A. Solar Radiation. In Encyclopedia of Applied Physics; Trigg, G.L., Ed.; VCH Publishers, Inc.: New York, NY, USA, 1997; pp. 393–429. [Google Scholar]
- National Oceanic and Atmospheric Administration. Solar Radiation Storm. Available online: https://www.swpc.noaa.gov/phenomena/solar-radiation-storm (accessed on 15 October 2020).
- Meier, M.M.; Matthiä, D. A space weather index for the radiation field at aviation altitudes. J. Space Weather. Space Clim. 2014, 4, A13. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, R.; Nakagawa, Y.; Sato, T. Radiation dose of aircrews during a solar proton event without ground-level enhancement. Ann. Geophys. 2015, 33, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Tobiska, W.K.; Meier, M.M.; Matthiae, D.; Copeland, K. Characterizing the Variation in Atmospheric Radiation at Aviation Altitudes; Buzulukova, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 453–471. [Google Scholar] [CrossRef]
- Marisaldi, M.; Fuschino, F.; Labanti, C.; Galli, M.; Longo, F.; Del Monte, E.; Barbiellini, G.; Tavani, M.; Giuliani, A.; Moretti, E.; et al. Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Dwyer, J.R.; Smith, D.M.; Uman, M.A.; Saleh, Z.; Grefenstette, B.; Hazelton, B.; Rassoul, H.K. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Smith, D.M.; Dwyer, J.R.; Hazelton, B.J.; Grefenstette, B.W.; Martinez-McKinney, G.F.M.; Zhang, Z.Y.; Lowell, A.W.; Kelley, N.A.; Splitt, M.E.; Lazarus, S.M.; et al. The rarity of terrestrial gamma-ray flashes. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Dwyer, J.R.; Hazelton, B.J.; Grefenstette, B.W.; Martinez-McKinney, G.F.M.; Zhang, Z.Y.; Lowell, A.W.; Kelley, N.A.; Splitt, M.E.; Lazarus, S.M.; et al. A terrestrial gamma ray flash observed from an aircraft. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Warner Jones, S.M.; Shaw, K.B.; Hughes, J.S. Survey into the Radiological Impact of the Normal Transport of Radioactive Material by Air. (Report NRPB-W39). Available online: www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1194947310807 (accessed on 28 September 2020).
- Harvey, M.P.; Jones, A.L.; Cabianca, T.; Potter, M. Survey into the Radiological Impact of the Normal Transport of Radioactive Material by Air (PHE-CRCE-006). Available online: https://www.gov.uk/government/publications/transport-of-radioactive-material-by-air-survey-into-the-radiological-impact (accessed on 28 September 2020).
- Javitz, H.S.; Lyman, T.R.; Maxwell, C.; Myers, E.L.; Thompson, C.R. Transport of Radioactive Material in the United States: Results of a Survey to Determine the Magnitude and Characteristics of Domestic, Unclassified Shipments of Radioactive Materials Final Report; Sandia National Laboratories: Albuquerque, NM, USA, 1985; p. 153. [Google Scholar]
- Office of Standard Development, U.S. Nuclear Regulatory Commission. Transportation of Radioactive Material by Air and OTHER Modes Docket No Pr-71, 73 (40 Fr 23768) Volume 1 Final Environmental Statement; USA, 1977; p. 353. Available online: https://www.nrc.gov/docs/ML1219/ML12192A283.pdf (accessed on 7 December 2020).
- International Commission on Non-Ionizing Radiation Protection. ICNIRP statement—Protection of workers against ultraviolet radiation. Health Phys. 2010, 99, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Diffey, B.L.; Roscoe, A.H. Exposure to solar ultraviolet radiation in flight. Aviat. Space Environ. Med. 1990, 61, 1032–1035. [Google Scholar] [PubMed]
- Nakagawara, V.B.; Montgomery, R.W.; Marshall, W.J.O. Optical Radiation Transmittance of Aircraft Windscreens and Pilot Vision. In FAA Report; DOT/FAA/AM-07/20; 2007. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/200720.pdf (accessed on 7 December 2020).
- Chorley, A.C.; Baczynska, K.A.; Benwell, M.J.; Evans, B.J.W.; Higlett, M.P.; Khazova, M.; O’Hagan, J.B. Occupational Ocular UV Exposure in Civilian Aircrew. Aerosp. Med. Hum. Perform. 2016, 87, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Baczynska, K.A.; Brown, S.; Chorley, A.C.; O’Hagan, J.B.; Khazova, M.; Lyachev, A.; Wittlich, M. In-Flight UV-A Exposure of Commercial Airline Pilots. Aerosp. Med. Hum. Perform. 2020, 91, 501–510. [Google Scholar] [CrossRef]
- Sanlorenzo, M.; Vujic, I.; Posch, C.; Cleaver, J.E.; Quaglino, P.; Ortiz-Urda, S. The risk of melanoma in pilots and cabin crew: UV measurements in flying airplanes. JAMA Dermatol. 2015, 151, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Cadilhac, P.; Bouton, M.-C.; Cantegril, M.; Cardines, C.; Gisquet, A.; Kaufman, N.; Klerlein, M. In-Flight Ultraviolet Radiation on Commercial Airplanes. Aerosp. Med. Hum. Perform. 2017, 88, 947–951. [Google Scholar] [CrossRef]
- Chorley, A.; Higlett, M.; Baczynska, K.; Hunter, R.; Khazova, M. Measurements of pilots’ occupational solar UV exposure. Photochem. Photobiol. 2014, 90, 935–940. [Google Scholar] [CrossRef]
- Baczynska, K.A.; Brown, S.; Chorley, A.C.; Lyachev, A.; Wittlich, M.; Khazova, M. Measurements of UV—A Exposure of Commercial Pilots Using Genesis-UV Dosimeters. Atmosphere 2020, 11, 475. [Google Scholar] [CrossRef]
- Meerkötter, R. An estimation of the UV radiation inside the cockpits of large commercial jets. CEAS Aeronaut. J. 2016, 8, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Meerkötter, R.; Schennetten, K. Validation of a radiative transfer model with measurements of UV radiation inside a commercial aircraft. J. Radiol. Prot. 2020, 40, 181–196. [Google Scholar] [CrossRef]
- Baumann, R.C. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 2005, 5, 305–316. [Google Scholar] [CrossRef]
- Cannon, P.S.; Angling, M.J.; Heaton, J.A.T.; Rogers, N.C.; Shukla, A.K. The Effects of Space Weather on Radio Systems. In Effects of Space Weather on Technology Infrastructure; Springer: Amsterdam, The Netherlands, 2004; pp. 185–201. [Google Scholar] [CrossRef]
- Balcer-Kubiczek, E.K. The Role of the Apoptotic Machinery in Ionizing Radiation-Induced Carcinogenesis. Crit. Rev. Oncog. 2016, 21, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Strahlenschutzkommission. Grundlagen zur Begründung von Grenzwerten für Beruflich Strahlenexponierte Personen, Empfehlung der Strahlenschutzkommission mit Wissenschaftlicher Begründung, Verabschiedet im Umlaufverfahren am 07 September 2018. Bekanntmachung im BAnz AT 14.11.2019 B5; Strahlenschutzkommission: Bonn, Germany, 2018. [Google Scholar]
- El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part D: Radiation. Lancet. Oncol. 2009, 10, 751–752. [Google Scholar] [CrossRef]
- Barnes, J.L.; Zubair, M.; John, K.; Poirier, M.C.; Martin, F.L. Carcinogens and DNA damage. Biochem. Soc. Trans. 2018, 46, 1213–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreuzer, M.; Auvinen, A.; Cardis, E.; Durante, M.; Harms-Ringdahl, M.; Jourdain, J.R.; Madas, B.G.; Ottolenghi, A.; Pazzaglia, S.; Prise, K.M.; et al. Multidisciplinary European Low Dose Initiative (MELODI): Strategic research agenda for low dose radiation risk research. Radiat. Environ. Biophys. 2018, 57, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundrát, P.; Friedland, W. Mechanistic Modeling Predicts Anti-Carcinogenic Radiation Effects on Intercellular Signaling In Vitro Turn Pro-Carcinogenic In Vivo. Radiat. Prot. Dosim. 2019, 183, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Sholl, L.M.; Barletta, J.A.; Hornick, J.L. Radiation-associated neoplasia: Clinical, pathological and genomic correlates. Histopathology 2017, 70, 70–80. [Google Scholar] [CrossRef]
- Belli, M.; Tabocchini, M.A. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020, 21, 5993. [Google Scholar] [CrossRef]
- Azzam, E.I.; Colangelo, N.W.; Domogauer, J.D.; Sharma, N.; de Toledo, S.M. Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. Health Phys. 2016, 110, 249–251. [Google Scholar] [CrossRef]
- Averbeck, D.; Salomaa, S.; Bouffler, S.; Ottolenghi, A.; Smyth, V.; Sabatier, L. Progress in low dose health risk research: Novel effects and new concepts in low dose radiobiology. Mutat. Res. 2018, 776, 46–69. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S. The adaptive response in radiobiology: Evolving insights and implications. Environ. Health Perspect. 1998, 106 (Suppl. 1), 277–283. [Google Scholar] [CrossRef]
- Feinendegen, L.E.; Pollycove, M.; Neumann, R.D. Whole-body responses to low-level radiation exposure: New concepts in mammalian radiobiology. Exp. Hematol. 2007, 35, 37–46. [Google Scholar] [CrossRef]
- Averbeck, D. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? Health Phys. 2009, 97, 493–504. [Google Scholar] [CrossRef]
- Tharmalingam, S.; Sreetharan, S.; Brooks, A.L.; Boreham, D.R. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem. Biol. Interact. 2019, 301, 54–67. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, E.; Auvinen, A.; Wahlberg, G. Incidence of cancer among Finnish airline cabin attendants, 1967-92. BMJ 1995, 311, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Erren, T.C.; Pape, H.G.; Reiter, R.J.; Piekarski, C. Chronodisruption and cancer. Naturwissenschaften 2008, 95, 367–382. [Google Scholar] [CrossRef]
- Kvaskoff, M.; Weinstein, P. Are some melanomas caused by artificial light? Med. Hypotheses 2010, 75, 305–311. [Google Scholar] [CrossRef]
- Rafnsson, V.; Hrafnkelsson, J.; Tulinius, H.; Sigurgeirsson, B.; Olafsson, J.H. Risk factors for cutaneous malignant melanoma among aircrews and a random sample of the population. Occup. Environ. Med. 2003, 60, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Sanlorenzo, M.; Wehner, M.R.; Linos, E.; Kornak, J.; Kainz, W.; Posch, C.; Vujic, I.; Johnston, K.; Gho, D.; Monico, G.; et al. The risk of melanoma in airline pilots and cabin crew: A meta-analysis. JAMA Dermatol. 2015, 151, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Silva, I.; De Stavola, B.; Pizzi, C.; Evans, A.D.; Evans, S.A. Cancer incidence in professional flight crew and air traffic control officers: Disentangling the effect of occupational versus lifestyle exposures. Int. J. Cancer 2013, 132, 374–384. [Google Scholar] [CrossRef]
- Blettner, M.; Zeeb, H.; Langner, I.; Hammer, G.P.; Schafft, T. Mortality from cancer and other causes among airline cabin attendants in Germany, 1960–1997. Am. J. Epidemiol. 2002, 156, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Blettner, M.; Zeeb, H.; Auvinen, A.; Ballard, T.J.; Caldora, M.; Eliasch, H.; Gundestrup, M.; Haldorsen, T.; Hammar, N.; Hammer, G.P.; et al. Mortality from cancer and other causes among male airline cockpit crew in Europe. Int. J. Cancer 2003, 106, 946–952. [Google Scholar] [CrossRef]
- Zeeb, H.; Hammer, G.P.; Langner, I.; Schafft, T.; Bennack, S.; Blettner, M. Cancer mortality among German aircrew: Second follow-up. Radiat. Environ. Biophys. 2010, 49. [Google Scholar] [CrossRef]
- Dreger, S.; Wollschläger, D.; Schafft, T.; Hammer, G.P.; Blettner, M.; Zeeb, H. Cohort study of occupational cosmic radiation dose and cancer mortality in German aircrew, 1960–2014. Occup. Environ. Med. 2020, 77, 285–291. [Google Scholar] [CrossRef]
- Ballard, T.J.; Lagorio, S.; De Santis, M.; De Angelis, G.; Santaquilani, M.; Caldora, M.; Verdecchia, A. A retrospective cohort mortality study of Italian commercial airline cockpit crew and cabin attendants, 1965-96. Int. J. Occup. Environ. Health 2002, 8, 87–96. [Google Scholar] [CrossRef]
- Paridou, A.; Velonakis, E.; Langner, I.; Zeeb, H.; Blettner, M.; Tzonou, A. Mortality among pilots and cabin crew in Greece, 1960–1997. Int. J. Epidemiol. 2003, 32, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Zeeb, H.; Blettner, M.; Langner, I.; Hammer, G.P.; Ballard, T.J.; Santaquilani, M.; Gundestrup, M.; Storm, H.; Haldorsen, T.; Tveten, U.; et al. Mortality from cancer and other causes among airline cabin attendants in Europe: A collaborative cohort study in eight countries. Am. J. Epidemiol. 2003, 158, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Langner, I.; Blettner, M.; Gundestrup, M.; Storm, H.; Aspholm, R.; Auvinen, A.; Pukkala, E.; Hammer, G.P.; Zeeb, H.; Hrafnkelsson, J.; et al. Cosmic radiation and cancer mortality among airline pilots: Results from a European cohort study (ESCAPE). Radiat. Environ. Biophys. 2004, 42, 247–256. [Google Scholar] [CrossRef]
- Hammer, G.P.; Auvinen, A.; De Stavola, B.L.; Grajewski, B.; Gundestrup, M.; Haldorsen, T.; Hammar, N.; Lagorio, S.; Linnersjö, A.; Pinkerton, L.; et al. Mortality from cancer and other causes in commercial airline crews: A joint analysis of cohorts from 10 countries. Occup. Environ. Med. 2014, 71, 313–322. [Google Scholar] [CrossRef]
- Pinkerton, L.E.; Waters, M.A.; Hein, M.J.; Zivkovich, Z.; Schubauer-Berigan, M.K.; Grajewski, B. Cause-specific mortality among a cohort of U.S. flight attendants. Am. J. Ind. Med. 2012, 55, 25–36. [Google Scholar] [CrossRef]
- Lynge, E. Risk of breast cancer is also increased among Danish female airline cabin attendants. BMJ 1996, 312, 253. [Google Scholar] [CrossRef] [Green Version]
- Gundestrup, M.; Storm, H.H. Radiation-induced acute myeloid leukaemia and other cancers in commercial jet cockpit crew: A population-based cohort study. Lancet 1999, 354, 2029–2031. [Google Scholar] [CrossRef]
- Haldorsen, T.; Reitan, J.B.; Tveten, U. Cancer incidence among Norwegian airline cabin attendants. Int. J. Epidemiol. 2001, 30. [Google Scholar] [CrossRef] [Green Version]
- Rafnsson, V.; Tulinius, H.; Jonasson, J.G.; Hrafnkelsson, J. Risk of breast cancer in female flight attendants: A population-based study (Iceland). Cancer Causes Control. 2001, 12. [Google Scholar] [CrossRef]
- Linnersjo, A.; Hammar, N.; Dammstrom, B.G.; Johansson, M.; Eliasch, H. Cancer incidence in airline cabin crew: Experience from Sweden. Occup. Environ. Med. 2003, 60. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsdottir, E.M.; Hrafnkelsson, J.; Rafnsson, V. Incidence of cancer among licenced commercial pilots flying North Atlantic routes. Environ. Health Glob. Access Sci. Source 2017, 16, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, P.; Cone, J.; Layefsky, M.; Goldberg, D.E.; Hurley, S. Cancer incidence in California flight attendants (United States). Cancer Causes Control. 2002, 13. [Google Scholar] [CrossRef]
- Paulus, W.E. Embryologie und Teratologie. In Die Geburtshilfe; Schneider, H., Husslein, P., Schneider, K.T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 523–546. [Google Scholar]
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2013 Report: Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2013; Volume 1. [Google Scholar]
- ICRP. Pregnancy and Medical Radiation, ICRP Publication 84; International Commission on Radiological Protection; Pergamon Press: Oxford, UK; New York, NY, USA, 2000. [Google Scholar]
- Streffer, C. Genetic predisposition and genomic instability: Studies with mouse embryos. In Recent Aspects of Cellular and Applied Radiobiology; Indo-German Symposium Proceedings; Sharan, R.N., Ed.; Forschungszentrum Jülich GmbH: Jülich, Germany, 1999; p. 180. [Google Scholar]
- Brenner, D.J.; Doll, R.; Goodhead, D.T.; Hall, E.J.; Land, C.E.; Little, J.B.; Lubin, J.H.; Preston, D.L.; Preston, R.J.; Puskin, J.S.; et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc. Natl. Acad. Sci. USA 2003, 100, 13761–13766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boice, J.D., Jr. Carcinogenesis—A synopsis of human experience with external exposure in medicine. Health Phys. 1988, 55, 621–630. [Google Scholar] [CrossRef]
- Doll, R.; Wakeford, R. Risk of childhood cancer from fetal irradiation. Br. J. Radiol. 1997, 70, 130–139. [Google Scholar] [CrossRef]
- Harvey, E.B.; Boice, J.D., Jr.; Honeyman, M.; Flannery, J.T. Prenatal x-ray exposure and childhood cancer in twins. N. Eng. J. Med. 1985, 312, 541–545. [Google Scholar] [CrossRef]
- Wakeford, R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat. Prot. Dosim. 2008, 132, 166–174. [Google Scholar] [CrossRef]
- Wakeford, R.; Little, M.P. Risk coefficients for childhood cancer after intrauterine irradiation: A review. Int. J. Radiat. Biol. 2003, 79, 293–309. [Google Scholar] [CrossRef]
- Asbell, P.A.; Dualan, I.; Mindel, J.; Brocks, D.; Ahmad, M.; Epstein, S. Age-related cataract. Lancet 2005, 365, 599–609. [Google Scholar] [CrossRef]
- Abraham, A.G.; Condon, N.G.; West Gower, E. The new epidemiology of cataract. Ophthalmol. Clin. N. Am. 2006, 19, 415–425. [Google Scholar] [CrossRef]
- West, S. Epidemiology of cataract: Accomplishments over 25 years and future directions. Ophthalmic Epidemiol. 2007, 14, 173–178. [Google Scholar] [CrossRef]
- Hammer, G.P.; Scheidemann-Wesp, U.; Samkange-Zeeb, F.; Wicke, H.; Neriishi, K.; Blettner, M. Occupational exposure to low doses of ionizing radiation and cataract development: A systematic literature review and perspectives on future studies. Radiat. Environ. Biophys. 2013, 52, 303–319. [Google Scholar] [CrossRef]
- Roberts, J.E. Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye Contact Lens 2011, 37, 246–249. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Bouffler, S.D.; Dörr, W.; Graw, J.; Muirhead, C.R.; Edwards, A.A.; Cooper, J. Radiation cataractogenesis: A review of recent studies. Radiat. Res. 2009, 172, 1–9. [Google Scholar] [CrossRef]
- Chorley, A.C.; Evans, B.J.; Benwell, M.J. Solar Eye Protection Practices of Civilian Aircrew. Aerosp. Med. Hum. Perform. 2015, 86, 953–961. [Google Scholar] [CrossRef]
- McCarty, C.A.; Taylor, H.R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 2002, 35, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Fujimichi, Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett. 2015, 368, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, F.A.; Manuel, F.K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M. Space Radiation and Cataracts in Astronauts. J. Radiat. Res. 2001, 156, 460–466. [Google Scholar] [CrossRef]
- Barnard, S.G.R.; McCarron, R.; Moquet, J.; Quinlan, R.; Ainsbury, E. Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens. Sci. Rep. 2019, 9, 10418. [Google Scholar] [CrossRef] [Green Version]
- Chylack, L.T., Jr.; Peterson, L.E.; Feiveson, A.H.; Wear, M.L.; Manuel, F.K.; Tung, W.H.; Hardy, D.S.; Marak, L.J.; Cucinotta, F.A. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat. Res. 2009, 172, 10–20. [Google Scholar] [CrossRef]
- Jones, J.A.; McCarten, M.; Manuel, K.; Djojonegoro, B.; Murray, J.; Feiversen, A.; Wear, M. Cataract formation mechanisms and risk in aviation and space crews. Aviat. Space Environ. Med. 2007, 78, A56–A66. [Google Scholar]
- Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; Sasaki, H.; Arnarsson, A.; Jonasson, F. Cosmic radiation increases the risk of nuclear cataract in airline pilots: A population-based case-control study. Arch. Ophthalmol. 2005, 123, 1102–1105. [Google Scholar] [CrossRef]
- Rastegar, N.; Eckart, P.; Mertz, M. Radiation-induced cataract in astronauts and cosmonauts. Graefe’s Arch. Clinical Exp. Ophthalmol. 2002, 240, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Chorley, A.C.; Evans, B.J.; Benwell, M.J. Civilian pilot exposure to ultraviolet and blue light and pilot use of sunglasses. Aviat. Space Environ. Med. 2011, 82, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Ferrick, A.M.; Bernstein, N.; Aizer, A.; Chinitz, L. Cosmic radiation induced software electrical resets in ICDs during air travel. Heart Rhythm. 2008, 5, 1201–1203. [Google Scholar] [CrossRef]
- Paz, O.; Teodorovich, N.; Kogan, Y.; Swissa, M. Transatlantic flight: Not only jet lag. Heart Rhythm. 2017, 14, 1099–1101. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.X.; Gwinn, R.P.; Warner, N.M.; Caylor, L.M.; Doherty, M.J. Mitigating bit flips or single event upsets in epilepsy neurostimulators. Epilepsy Behav. Case Rep. 2016, 5, 72–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clair, W.K.; Williams, H.; Hygaard, J.; Saavedra, P.J. A Travel Alert. J. Innov. Card. Rhythm. Manag. 2013, 4, 1457–1460. [Google Scholar] [CrossRef]
- St. Jude Medical. Important Physician Advisory. Available online: https://www.bfarm.de/SharedDocs/Kundeninfos/EN/01/2005/02528-05_kundeninfo_en.pdf?__blob=publicationFile&v=5 (accessed on 31 August 2020).
- Boston Scientific. Urgent Field Safety Notice. S-ICD Programmer Software Version 4.04 Addresses Two Previous Field Safety Notices (Ref. 100000038388 and Ref. 92127890). Available online: https://www.bfarm.de/SharedDocs/Kundeninfos/EN/01/2017/05887-17_kundeninfo_en.pdf?__blob=publicationFile&v=2 (accessed on 31 August 2020).
- Bradley, P.D.; Normand, E. Single event upsets in implantable cardioverter defibrillators. IEEE Trans. Nucl. Sci. 1998, 45, 2929–2940. [Google Scholar] [CrossRef]
- Olsen, J.; Becher, P.E.; Fynbo, P.B.; Raaby, P.; Schultz, J. Neutron-induced single event upsets in static RAMS observed a 10 km flight attitude. IEEE Trans. Nucl. Sci. 1993, 40, 74–77. [Google Scholar] [CrossRef]
- Taber, A.; Normand, E. Single event upset in avionics. IEEE Trans. Nucl. Sci. 1993, 40, 120–126. [Google Scholar] [CrossRef]
- Australian Transport Safety Bureau. In-Flight Upset—154 km West of Learmonth, WA, 7 October 2008, VH-QPA, Airbus A330-303; 2011; p. 313. Available online: https://reports.aviation-safety.net/2008/20081007-0_A333_VH-QPA.pdf (accessed on 7 December 2020).
- JEDEC. Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors. In Soft Errors in Modern Electronic Systems; JESD89A; JEDECEMBER Solid State Technology Association: Arlington, VA, USA, 2006. [Google Scholar]
- IEC. Process Management for Avionics-Atmospheric Radiation Effects: Part 2: Guidelines for Single Event Effects Testing for Avionics Systems; IEC 62396-2; International Electrotechnical Commission: Geneva, Switzerland, 2007. [Google Scholar]
- Cecchetto, M.; García Alía, R.; Wrobel, F. Impact of Energy Dependence on Ground Level and Avionic SEE Rate Prediction When Applying Standard Test Procedures. Aerospace 2019, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Hands, A.; Dyer, C.S.; Lei, F. SEU Rates in Atmospheric Environments: Variations Due to Cross-Section Fits and Environment Models. IEEE Trans. Nucl. Sci. 2009, 56, 2026–2034. [Google Scholar] [CrossRef]
- Quinn, H.; Watkins, A.; Dominik, L.; Slayman, C. The Effect of 1–10-MeV Neutrons on the JESD89 Test Standard. IEEE Trans. Nucl. Sci. 2019, 66, 140–147. [Google Scholar] [CrossRef]
- Dyer, C.; Hands, A.; Ford, K.; Frydland, A.; Truscott, P. Neutron-Induced Single Event Effects Testing Across a Wide Range of Energies and Facilities and Implications for Standards. IEEE Trans. Nucl. Sci. 2006, 53, 3596–3601. [Google Scholar] [CrossRef]
- Dyer, C.; Lei, F. Monte Carlo calculations of the influence on aircraft radiation environments of structures and solar particle events. IEEE Trans. Nucl. Sci. 2001, 48, 1987–1995. [Google Scholar] [CrossRef]
- Normand, E.; Vranish, K.; Sheets, A.; Stitt, M.; Kim, R. Quantifying the Double-Sided Neutron SEU Threat, From Low Energy Thermal and High Energy >10 MeV Neutrons. IEEE Trans. Nucl. Sci. 2006, 53, 3587–3595. [Google Scholar] [CrossRef]
- Baumann, R.; Hossain, T.; Smith, E.; Murata, S.; Kitagawa, H. Boron as a primary source of radiation in high density DRAMs. In Proceedings of the 1995 Symposium on VLSI Technology. Digest of Technical Papers, Kyoto, Japan, 6–8 June 1995; pp. 81–82. [Google Scholar]
- Weulersse, C.; Houssany, S.; Guibbaud, N.; Segura-Ruiz, J.; Beaucour, J.; Miller, F.; Mazurek, M. Contribution of Thermal Neutrons to Soft Error Rate. IEEE Trans. Nucl. Sci. 2018, 65, 1851–1857. [Google Scholar] [CrossRef]
- Hands, A.; Morris, P.; Ryden, K.; Dyer, C.; Truscott, P.; Chugg, A.; Parker, S. Single Event Effects in Power MOSFETs Due to Atmospheric and Thermal Neutrons. IEEE Trans. Nucl. Sci. 2011, 58, 2687–2694. [Google Scholar] [CrossRef]
- Hands, A.; Morris, P.; Dyer, C.; Ryden, K.; Truscott, P. Single Event Effects in Power MOSFETs and SRAMs Due to 3 MeV, 14 MeV and Fission Neutrons. IEEE Trans. Nucl. Sci. 2011, 58, 952–959. [Google Scholar] [CrossRef]
- Dyer, C.S.; Lei, F.; Clucas, S.N.; Smart, D.F.; Shea, M.A. Solar particle enhancements of single-event effect rates at aircraft altitudes. IIEEE Trans. Nucl. Sci. 2003, 50, 2038–2045. [Google Scholar] [CrossRef]
- Dyer, C.; Hands, A.; Ryden, K.; Lei, F. Extreme Atmospheric Radiation Environments and Single Event Effects. IEEE Trans. Nucl. Sci. 2018, 65, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Tavani, M.; Argan, A.; Pesoli, A.; Palma, F.; Gerardin, S.; Bagatin, M.; Trois, A.; Picozza, P.; Benvenuti, P.; Flamini, E.; et al. Possible effects on avionics induced by Terrestrial Gamma-Ray Flashes. Nat. Hazards Earth Syst. Sci. 2013, 13, 7023. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Agrawal, V.D. Single Event Upset: An Embedded Tutorial. In Proceedings of the 21st International Conference on VLSI Design (VLSID 2008), Hyderabad, India, 4–8 January 2008; pp. 429–434. [Google Scholar]
- Edwards, R.; Dyer, C.; Normand, E. Technical standard for atmospheric radiation single event effects, (SEE) on avionics electronics. In Proceedings of the 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No. 04TH8774), Atlanta, GA, USA, 22 July 2004. [Google Scholar]
- National Oceanic and Atmospheric Administration. Intense Space Weather Storms October 19-November 07, 2003; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, ML, USA, 2004.
- Poppe, B.B. New scales help public, technicians understand space weather. Eos Trans. Am. Geophys. Union 2000, 81, 322. [Google Scholar] [CrossRef]
- Poppe, B.; Jorden, K. Sentinels of the Sun; Johnson Books: Boulder, CO, USA, 2006. [Google Scholar]
- Matthiä, D.; Schaefer, M.; Meier, M.M. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement. J. Space Weather. Space Clim. 2015, 5, A17. [Google Scholar] [CrossRef] [Green Version]
- ICAO. New Global Aviation Space Weather Network Launched. 2019. Available online: https://www.icao.int/Newsroom/Pages/New-global-aviation-space-weather-network-launched.aspx (accessed on 4 December 2020).
- ICAO. Panel Reference Documents. 2020. Available online: https://www.icao.int/airnavigation/METP/Pages/Public-Documents.aspx (accessed on 4 December 2020).
- Meier, M.M.; Matthia, D. Dose assessment of aircrew: The impact of the weighting factors according to ICRP 103. J. Radiol. Prot. 2019, 39, 698–706. [Google Scholar] [CrossRef]
- Copeland, K.; Matthiä, D.; Meier, M.M. Solar Cosmic Ray Dose Rate Assessments During GLE 72 Using MIRA and PANDOCA. Space Weather 2018, 16, 969–976. [Google Scholar] [CrossRef]
- FAA Advisory Committee on Radiation Biology Aspects of the Supersonic Transport. Cosmic radiation exposure during air travel. In Office of Aerospace Medicine Report; FAA-AM-80-2; 1980. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/1980s/media/AM80-02.pdf (accessed on 7 December 2020).
- Schaefer, H.J. Radiation Exposure in Air Travel. Science 1971, 173, 780–783. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Friedberg, W. Atmospheric cosmic rays at aircraft altitudes. Environ. Int. 1994, 20, 645–663. [Google Scholar] [CrossRef]
- Oak Ridge National Laboratory. Monte Carlo N-Particle Transport Code System for Multiparticle and High Energy Applications (MCNPX 2.7.0), RSICC Code Package C740; Radiation Safety Information Computational Center: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Copeland, K.; Mertens, C. CARI-NAIRAS: Calculating Flight Doses from NAIRAS Data Using CARI; DOT/FAA/AM14/13. Available online: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201413.pdf (accessed on 7 December 2020).
- Latocha, M.; Beck, P.; Rollet, S. AVIDOS—A software package for European accredited aviation dosimetry. Radiat. Prot. Dosim. 2009, 136, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Mares, V.; Maczka, T.; Leuthold, G.; Ruhm, W. Air crew dosimetry with a new version of EPCARD. Radiat. Prot. Dosim. 2009, 136, 262–266. [Google Scholar] [CrossRef]
- Mertens, C.J.; Meier, M.M.; Brown, S.; Norman, R.B.; Xu, X. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather Int. J. Res. Appl. 2013, 11, 603–635. [Google Scholar] [CrossRef] [Green Version]
- Green, A.R.; Bennett, L.G.I.; Lewis, B.J.; Kitching, F.; McCall, M.J.; Desormeaux, M.; Butler, A. An empirical approach to the measurement of the cosmic radiation field at jet aircraft altitudes. Adv. Space Res. 2005, 36, 1618–1626. [Google Scholar] [CrossRef]
- Bottollier-Depois, J.F.; Blanchard, P.; Clairand, I.; Dessarps, P.; Fuller, N.; Lantos, P.; Saint-Lô, D.; Trompier, F. An operational approach for aircraft crew dosimetry: The SIEVERT system. Radiat. Prot. Dosim. 2007, 125, 421–424. [Google Scholar] [CrossRef]
- Bottollier-Depois, J.F.; Beck, P.; Latocha, P.; Mares, V.; Matthiä, D.; Ruhm, W. Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation; European Commission, Directorate-General for Energy, Unit D4—Radiation Protection: Luxemburg, 2012. [Google Scholar]
- Meier, M.M.; Matthiä, D.; Forkert, T.; Wirtz, M.; Scheibinger, M.; Hübel, R.; Mertens, C.J. RaD-X: Complementary measurements of dose rates at aviation altitudes. Space Weather 2016, 14, 689–694. [Google Scholar] [CrossRef]
- Allisy, A.; Jennings, W.A.; Kellerer, A.M.; Müller, J.W. Report 51. J. Int. Comm. Radiat. Units Meas. 2016, os26. [Google Scholar] [CrossRef]
- Thomas, D.J. ICRU report 85: Fundamental quantities and units for ionizing radiation. Radiat. Prot. Dosim. 2012, 150, 550–552. [Google Scholar] [CrossRef] [Green Version]
- Gerdung, S.; Pihet, P.; Grindborg, J.E.; Roos, H.; Schrewe, U.J.; Schuhmacher, H. Operation and Application of Tissue Equivalent Proportional Counters. Radiat. Prot. Dosim. 1995, 61, 381–404. [Google Scholar] [CrossRef]
- Dietze, G.; Menzel, H.G.; Bühler, G. Calibration of Tissue-Equivalent Proportional Counters Used as Radiation Protection Dosemeters. Radiat. Prot. Dosim. 1984, 9, 245–249. [Google Scholar] [CrossRef]
- Leo, W.R. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef] [Green Version]
- Dachev, T.P.; Matviichuk, Y.N.; Semkova, J.V.; Koleva, R.T.; Boichev, B.; Baynov, P.; Kanchev, N.A.; Lakov, P.; Ivanov, Y.J.; Tomo, P.T.; et al. Space radiation dosimetry with active detections for the scientific program of the second Bulgarian cosmonaut on board the MIR space station. Adv. Space Res. 1989, 9, 247–251. [Google Scholar] [CrossRef]
Expected Cases Per mSv in 100,000 Persons | ||
---|---|---|
DDREF * | Whole Population ** | Age Group 18–64 Years |
1 | 34 (8 fatal) | 23 (6 fatal) |
2 | 17 (4 fatal) | 12 (3 fatal) |
Aircrew Group | Control Group | Standardized Mortality Ratios * | Reference | |
---|---|---|---|---|
All Cancers | Specific Cancers | |||
German cohort | ||||
Female cabin crew (16,014) | General population (Germany) | 0.79 (0.54–1.17) | [85] | |
Male cabin crew (4537) | 0.71 (0.41–1.18) | |||
Male cockpit crew (28,000) | General population (Germany) | 0.68 (0.63–0.74) | Melanoma: 1.78 (1.15–2.67) Lung cancer: 0.53 (0.44–0.62) | [86] |
Male cockpit crew (6017) | General population (Germany) | 0.64 (0.51–0.81) | Lung cancer: 0.33 (0.17–0.57) Brain tumors: 2.1 (1.03–3.93) | [87] |
Female cabin crew (17,022) | 0.95 (0.72–1.26) | |||
Male cabin crew (3735) | 0.89 (0.59–1.33) | Non-Hodgkin-Lymphoma: 4.24 (1.26–10.76) | ||
Female cockpit crew (90) | General population (Germany)—sex, age-group and calendar-period-specific controls | 1 case (unspecified cause) | [88] | |
Male cockpit crew (6006) | 0.57 (0.47–0.69) | Brain tumors: 2.01 (1.15–3.28) | ||
Female cabin crew (17,017) | 0.84 (0.69–1.02) | |||
Male cabin crew (3733) | 0.71 (0.52–0.96) | |||
Cohorts in other European countries | ||||
Male cockpit crew (3022) | General population (Italy) | 0.58 | [89] | |
Male cabin crew (3418) | 0.67 | |||
Female cabin crew (3428) | 0.90 | |||
Male cockpit crew (843) | General population (Greece) | 0.6 (0.3–0.9) | [90] | |
Female cabin crew (1835-?) | 0.8 (0.3–1.7) | |||
Male cabin crew (?) | 0.4 (0.1–1.2) | |||
European countries: pooled cohorts or meta-analysis of national cohorts | ||||
Female cabin crew (16,014) | General population (8 European countries) | 0.78 (0.66–0.95) | [91] | |
Male cabin crew (4537) | 0.90 (0.74–1.12) | Non-Melanoma Skin Cancer: 1.98–30.45 | ||
Male cockpit crew (843) | General population (8 European countries)—case-control study | 0.72 (0.64–0.82) | [92] | |
Commercial airline crew (93,771) | General population (10 European countries) | Melanoma: 1.57 | [93] | |
Male Cockpit | 0.73 | |||
Female Cabin | 1.01 | |||
Male cabin | 1.0 | |||
North American cohorts | ||||
Female cabin crew (9610) | General population (United States of America) | 0.71 (0.62–0.81) | Respiratory tract tumors: 0.5 (0.36–0.68) | [94] |
Male cabin crew (1701) | 0.83 (0.67–1.02) | Respiratory tract tumors: 0.66 (0.43–0.98) Non-Hodgkin- Lymphoma: 2.3 (1.1–4.23) | ||
North American and European cohorts (meta-analysis) | ||||
Pilots | Respective general population | Melanoma: 1.83 (1.27–2.63) | [83] | |
Cabin crew | Melanoma: 1.42 (0.89–2.26) |
Aircrew Group | Control Group | Standardized Incidence Ratios * | Reference | |
---|---|---|---|---|
All Cancers | Specific Cancers | |||
Scandinavian and Icelandic cohorts | ||||
Female cabin crew (1577) | General population (Finland) | 1.23 (0.86–1.71) | Breast cancer: 1.87 (1.15–2.23) Bone tumors: 15.1 (1.82–54.4) | [79] |
Male cabin crew (187) | 2 cases (Non-Hodgkin-Lymphoma, Kaposi-Sarcoma) | |||
Female cabin crew (915) | General population (Denmark) | Breast cancer: 1.61 (0.9–2.7) | [95] | |
Male cockpit crew (3790) | General population (Denmark) | 1.1 (0.94–1.28) | Melanoma: 2.4 (1.3–4.0) Other skin cancer: 2.3 (1.7–3.0) | [96] |
Female cabin crew (3144) | General population (Norway) | 1.1 (0.9–1.3) | Melanoma: 1.7 (1.0–2.7) Non-Melanoma Skin Cancer: 2.9 (1.0–6.9) | [97] |
Male cabin crew (599) | 1.7 (1.3–2.2) | Melanoma: 2.9 (1.1–6.4) Non-Melanoma Skin Cancer: 9.9 (4.5–18.8) Upper respiratory tract tumors: 6.0 (2.7–11.4) Liver tumors: 10.8 (1.3–39.2) | ||
Female cabin crew (1532) | General population (Iceland) | 1.2 (1.0–1.6) | Breast cancer: 1.5 (1.0–2.1) Melanoma: 3.0 (1.2–6.2) | [98] |
Female cabin crew (2324) | General population (Sweden)—case-control study | 1.01 (0.18–1.24) | Melanoma: 2.18 (1.09–3.9) | [99] |
Male cabin crew (632) | 1.16 (0.76–1.55) | Melanoma: 3.66 (1.34–7.97) | ||
Male cockpit crew (551) | General population (Iceland) | 0.90 (0.71–1.11) | Melanoma: 3.31 (1.33–6.81) Basal cell carcinoma: 2.49 (1.69–3.54) | [100] |
United Kingdom cohort | ||||
Flight crew (16,329) | General population (United Kingdom) | 0.71 (0.66–0.76) | Smoking-related cancer: 0.33 (0.27–0.38) Melanoma: 1.87 (1.45–2.38) | [84] |
Air traffic control officers (3165) | 0.80 (0.68–0.94) | Smoking-related cancer: 0.42 (0.28–0.60) Melanoma: 2.66 (1.55–4.25) | ||
North American cohorts | ||||
Female cabin crew (6895) | California statewide sex-, age-, and site-specific incidence rates | 1.05 (0.86–1.27) | Breast cancer: 1.42 (1.09–1.83) Melanoma: 2.50 (1.28–4.38) | [101] |
Male cabin crew (1216) | 2.43 (1.57–3.58) | Kaposi’s Sarcoma: 9.29 (5.18–15.36) Melanoma: 3.93 (0.74–11.62) | ||
North American and European cohorts (meta-analysis) | ||||
Pilots | Respective general population | Melanoma: 2.22 (1.67–2.93) | [83] | |
Cabin crew | Melanoma: 2.09 (1.67–2.62) |
Phase of Pregnancy in which the Radiation Exposure Occurs | Effect | Suspected Threshold Dose |
---|---|---|
From the first day of the last menstrual period, especially 2nd half of the cycle | Death/non-implantation of the fertilized egg cell (“all-or-none law”) | 50 to 100 mGy |
4 weeks after the last menstrual period | Damage to the embryonic primordium (organ anlagen, e.g., heart, eye, nervous system …) ⇒ Risk of malformations | 50 to 100 mGy |
From the ~11th week of pregnancy | Malformation of the brain | 300 mGy |
Whole pregnancy | Increased risk of leukemia and solid tumors in childhood | ~10 mSv |
Impact | Units | Advisory Level | |
---|---|---|---|
Moderate | Severe | ||
Global Navigation Satellite System (GNSS) | |||
Amplitude Scintillation (S4) | dimensionless | 0.5 | 0.8 |
Phase Scintillation (Sigma-Phi) | radians | 0.4 | 0.7 |
Vertical Total Electron Content | TEC Units | 125 | 175 |
Radiation | |||
Effective Dose * | mSv/h | 0.030 | 0.080 |
HF | |||
Auroral Absorption (Kp) | Kp index | 8 | 9 |
Polar Cap Absorption | dB (30MHz Riometer data) | 2 | 5 |
Solar X-rays, 0.1–0.8 nm | W/m−2 | 1 × 10−4 | 1 × 10−3 |
Post-Storm Depression (MUF) ** | % | 30 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, M.M.; Copeland, K.; Klöble, K.E.J.; Matthiä, D.; Plettenberg, M.C.; Schennetten, K.; Wirtz, M.; Hellweg, C.E. Radiation in the Atmosphere—A Hazard to Aviation Safety? Atmosphere 2020, 11, 1358. https://doi.org/10.3390/atmos11121358
Meier MM, Copeland K, Klöble KEJ, Matthiä D, Plettenberg MC, Schennetten K, Wirtz M, Hellweg CE. Radiation in the Atmosphere—A Hazard to Aviation Safety? Atmosphere. 2020; 11(12):1358. https://doi.org/10.3390/atmos11121358
Chicago/Turabian StyleMeier, Matthias M., Kyle Copeland, Klara E. J. Klöble, Daniel Matthiä, Mona C. Plettenberg, Kai Schennetten, Michael Wirtz, and Christine E. Hellweg. 2020. "Radiation in the Atmosphere—A Hazard to Aviation Safety?" Atmosphere 11, no. 12: 1358. https://doi.org/10.3390/atmos11121358
APA StyleMeier, M. M., Copeland, K., Klöble, K. E. J., Matthiä, D., Plettenberg, M. C., Schennetten, K., Wirtz, M., & Hellweg, C. E. (2020). Radiation in the Atmosphere—A Hazard to Aviation Safety? Atmosphere, 11(12), 1358. https://doi.org/10.3390/atmos11121358