Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China
Abstract
:1. Introduction
2. Methodology
2.1. VOCs Sample Collection
2.2. VOCs Analysis
2.3. PMF Source Apportionment Model
2.4. Ozone Formation Potential
2.5. Cancer and Noncancer Risk Assessments
3. Results and Discussion
3.1. Characteristics of VOCs and Their Diurnal Variations
3.2. VOC Source Apportionment
3.3. Ozone Formation Potential
3.4. Cancer and Noncancer Risk Assessments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kountouriotis, A.; Aleiferis, P.G.; Charalambides, A.G. Numerical investigation of VOC levels in the area of petrol stations. Sci. Total Environ. 2014, 470, 1205–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.Y.; Chiang, H.C.; Shie, R.H.; Ku, C.H.; Lin, T.Y.; Chen, M.J.; Chen, N.T.; Chen, Y.C. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef] [PubMed]
- McFiggans, G.; Mentel, T.F.; Wildt, J.; Pullinen, I.; Kang, S.; Kleist, E.; Schmitt, S.; Springer, M.; Tillmann, R.; Wu, C.; et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 2019, 565, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Toro, M.V.; Cremades, L.V.; Calbó, J. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburra Valley (Colombia). Chemosphere 2006, 65, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Liu, S. Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011. Atmos. Chem. Phys. 2013, 14, 6089–6101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zheng, Y.F.; Li, S.; Xu, J.X.; Guan, Q. Long Term Variations of Ozone Concentration of in a Winter Wheat Field and Its Loss Estimate Based on Dry Matter and Yield. Huan Jing Ke Xue. 2017, 38, 5315–5325. (In Chinese) [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). 2011. Available online: http://www.atsdr.cdc.gov (accessed on 11 May 2016).
- International Agency for Research on Cancer (IARC). 2015. Available online: http://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 11 May 2016).
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Jing, L.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Xing, J.; Zhang, H.; Ding, D.; Wang, S. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China of the 2050s. Atmos. Environ. 2019, 218, 117020. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Zhang, Y.; Zhang, Z.; Li, X. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China. Environ. Sci. Pollut. Res. 2019, 26, 27769–27782. [Google Scholar] [CrossRef] [PubMed]
- Geng, N.B.; Wang, J.; Xu, Y.F.; Zhang, W.D.; Chen, C.; Zhang, R.Q. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment. Particuology 2013, 11, 99–109. [Google Scholar] [CrossRef]
- Lei, Y.L.; Shen, Z.X.; Tang, Z.Y.; Zhang, Q.; Sun, J.; Ma, Y.J.; Wu, X.Y.; Qin, Y.M.; Xu, H.M.; Zhang, R.J. Aerosols chemical composition, light extinction, and source apportionment near a desert margin city, Yulin, China. PeerJ 2019, 8, 8447. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.L.; Zhang, J.Q.; Zheng, J.R.; Yao, R.Z.; Wang, P.; Liu, H.X.; Xiao, W.S.; Liu, X.L.; Cao, J.J. Characterization of carbonaceous fractions in PM2.5 and PM10 over a typical industrial city in central China. Environ. Sci. Pollut. Res. 2019, 26, 16855–16867. [Google Scholar] [CrossRef]
- Xu, Y.; Ying, Q.; Hu, J.; Gao, Y.; Yang, Y.; Wang, D.; Zhang, H. Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Qual. Atmos. Hlth. 2017, 11, 95–109. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Jun-Liang, X.U.; Zhao, X.P.; Wang, D.G. Grey Correlation Analysis of Air Quality and Its Affection Factors in Luoyang City. J. Henan Univ. Sci. Technol. 2012, 44, 100–104. [Google Scholar]
- Gu, X.; Yin, S.; Lu, X.; Zhang, H.; Wang, L.; Bai, L.; Wang, C.; Zhang, R.; Yuan, M. Recent development of a refined multiple air pollutant emission inventory of vehicles in the Central Plains of China. J. Environ. Sci. 2019, 84, 80–96. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Zhang, L.M.; Zhang, Y.; Zhang, T.; Lei, Y.L.; Niu, X.Y.; Zhang, Q.; Dang, W.; Han, W.P.; et al. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environ. Int. 2019, 133, 105252. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.C.; Chen, W.H.; Fan, C.L.; Tong, Y.H.; Weng, T.H.; Chen, S.P.; Kuo, C.P.; Wang, J.L.; Chang, J.S. Source Apportionment of Volatile Organic Compounds (VOCs) by Positive Matrix Factorization (PMF) supported by Model Simulation and Source Markers-Using Petrochemical Emissions as a Showcase. Environ. Pollut. 2019, 254, 112848. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.P. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications; California Air Resources Board Contract; University of California: Riverside, CA, USA, 2009; Volume 339. [Google Scholar]
- Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K.K. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazardous Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Integrated Risk information Systemd-Benzene. 1998. Available online: http://www.epa.gov/iris/subst.o276.htm (accessed on 14 December 2020).
- An, T.; Huang, Y.; Li, G.; He, Z.; Chen, J.; Zhang, C. Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods. Environ. Int. 2014, 73, 186–194. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Chen, J.; Huang, Y.; An, T.; Zhang, C. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ. Int. 2015, 77, 85–94. [Google Scholar] [CrossRef]
- Cui, H. Source Profile of Volatile Organic Compounds (VOCs) of a Petrochemical Industry in the Yangtze River Delta, China. Chem. Eng. Trans. 2016, 54, 121–126. [Google Scholar]
- Cetin, E.; Odabasi, M.; Seyfioglu, R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 2003, 312, 103–112. [Google Scholar] [CrossRef]
- Yen, C.H.; Horng, J.J. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan. J. Environ. Sci. Heal A 2009, 44, 1424–1429. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C.; Ho, W.K.; Blake, D.R.; Cheng, Y.; Li, Y.S.; Fung, K.; Louie, P.K.K.; Park, D. Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. Atmos. Chem. Phys. 2009, 9, 7491–7504. [Google Scholar] [CrossRef] [Green Version]
- Na, K.; Yong, P.K.; Moon, I.; Moon, K.C. Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere 2004, 55, 585–594. [Google Scholar] [CrossRef]
- Schauer, J.J. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 35, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Garzon, J.P.; Huertas, J.I.; Magana, M.; Huertas, M.E.; Cardenas, B.; Watanabe, T.; Maeda, T.; Wakamatsu, S.; Blanco, S. Volatile organic compounds in the atmosphere of Mexico City. Atmos. Environ. 2015, 119, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Menchaca-Torre, H.L.; Mercado-Hernández, R.; Rodríguez-Rodríguez, J.; Mendoza-Domínguez, A. Diurnal and seasonal variations of carbonyls and their effect on ozone concentrations in the atmosphere of Monterrey, Mexico. J. Air Waste Manag. Assoc. 2015, 65, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosjean, E.; Rasmussen, R.A.; Grosjean, D. Toxic Air Contaminants in Porto Alegre, Brazil. Environ. Sci. Technol. 1999, 33, 1970–1978. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Scheff, P.A.; Wadden, R.A. Receptor modeling of volatile organic compounds. 1. Emission inventory and validation. Environ. Sci. Technol. 1993, 27, 617–625. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.L.; Ho, K.F.; Gao, Y.; Liu, C.; Hang Ho, S.S.; Li, H.W.; Lee, S.C.; Wang, X.M.; Jiang, B.Q.; et al. Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study. Atmos. Environ. 2018, 177, 64–74. [Google Scholar] [CrossRef]
- Chang, W.L.F.W. Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmos. Environ. 2002, 36, 1993–2002. [Google Scholar]
- Borbon, A.; Locoge, N.; Veillerot, M.; Galloo, J.C.; Guillermo, R. Characterisation of NMHCs in a French urban atmosphere: Overview of the main sources. Sci. Total Environ. 2002, 292, 177–191. [Google Scholar] [CrossRef]
- Liao, K.J.; Hou, X. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States. J. Air Waste Manag. Assoc. 2015, 65, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Min, S.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.C.; Wang, J.L.; Fu, L. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmos. Environ. 2008, 42, 6261–6274. [Google Scholar] [CrossRef]
- Thijsse, T.R.; Vanoss, R.F.; Lenschow, P. Determination of source contributions to ambient volatile organic compound concentrations in Berlin. J. Air Waste Manag. Assoc. 1999, 49, 1394–1404. [Google Scholar] [CrossRef]
- Wang, H.L.; Lou, S.R.; Huang, C.; Qiao, L.P.; Tang, X.B.; Chen, C.H.; Zeng, L.M.; Wang, Q.; Zhou, M.; Lu, S.H. Source Profiles of Volatile Organic Compounds from Biomass Burning in Yangtze River Delta, China. Aerosol. Air. Qual. Res. 2014, 14, 818–828. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Xie, S.D. Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China. Atmos. Chem. Phys. 2009, 9, 6983–7002. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.S.; Zhou, Y.; White, M.L.; Mao, H.; Talbot, R.; Sive, B.C. Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons in New England: Seasonal variations and regional sources. Atmos. Chem. Phys. 2010, 10, 1083–1134. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176, 64–74. [Google Scholar] [CrossRef]
- Yang, Y.; Dongsheng, J.; Jie, S.; Yinghong, W.; Yuesi, W. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Sci. Total Environ. 2019, 695, 133889. [Google Scholar] [CrossRef] [PubMed]
- LBS, L. b. o. s., 2018. Statistical Year Book of LUOYANG. 2018. Available online: http://www.lytjj.gov.cn/sitesources/lystjj/page_pc/tjsj/tjnj/article84afc9205f284267abf3797fc157fbfe (accessed on 14 December 2020).
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Jiang, M. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos. Environ. 2018, 192, 55–71. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.J.; Hu, R.Y.; Zhang, H.; Zhang, M.; Zhang, F.H. Distribution, Sources, and Health Risk Assessment of Volatile Organic Compounds in Hefei City. Arch. Environ. Con. Tox. 2020, 78, 392–400. [Google Scholar] [CrossRef] [PubMed]
VOCs | JX | YX | LG | DX | HX | YY | XA | YC | JL | VOC-AVG a | |
---|---|---|---|---|---|---|---|---|---|---|---|
Alkane | Ethane | 3.91 | 4.16 | 2.45 | 2.64 | 3.42 | 2.05 | 1.71 | 1.64 | 5.09 | 3.01 |
Propane | 4.25 | 6.02 | 1.20 | 1.34 | 3.03 | 2.94 | 1.99 | 1.74 | 4.85 | 3.04 | |
Isobutane | 1.06 | 1.07 | 0.61 | 0.50 | 0.68 | 0.49 | 0.53 | 0.50 | 1.34 | 0.75 | |
n-Butane | 1.08 | 1.35 | 0.56 | 0.58 | 0.86 | 1.15 | 0.57 | 0.62 | 1.17 | 0.88 | |
iso-Pentane | 0.66 | 0.79 | 0.22 | 0.25 | 0.41 | 0.02 | 0.02 | 0.02 | 0.83 | 0.36 | |
n-Pentane | 0.68 | 0.60 | 0.27 | 0.24 | 0.37 | 0.24 | 0.24 | 0.24 | 0.71 | 0.40 | |
Cyclopentane | 0.05 | 0.21 | 0.12 | 0.12 | 0.23 | 0.14 | 0.14 | 0.12 | 0.08 | 0.13 | |
2,2-Dimethylbutane | 0.04 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.08 | 0.04 | |
2,3-Dimethylbutane | 0.04 | 0.08 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.08 | 0.04 | |
2-Methylpentane | 0.31 | 0.32 | 0.18 | 0.12 | 0.12 | 0.20 | 0.18 | 0.21 | 0.39 | 0.23 | |
3-Methylpentane | 0.24 | 0.36 | 0.12 | 0.10 | 0.14 | 0.15 | 0.14 | 0.16 | 0.28 | 0.19 | |
n-Hexane | 0.49 | 0.41 | 0.12 | 0.11 | 0.16 | 0.16 | 0.26 | 0.17 | 1.36 | 0.36 | |
2,4-Dimethylpentane | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.02 | |
Methylcyclopentane | 0.07 | 0.10 | 0.03 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.11 | 0.06 | |
2-Methylhexane | 0.08 | 0.09 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.09 | 0.06 | |
2,3-Dimethylpentane | 0.08 | 0.07 | 0.04 | 0.04 | 0.04 | 0.06 | 0.07 | 0.06 | 0.09 | 0.06 | |
Cyclohexane | 0.27 | 0.15 | 0.08 | 0.07 | 0.09 | 0.15 | 0.22 | 0.20 | 0.46 | 0.19 | |
3-Methylhexane | 0.10 | 0.24 | 0.11 | 0.12 | 0.09 | 0.08 | 0.08 | 0.08 | 0.14 | 0.12 | |
n-Heptane | 0.09 | 0.15 | 0.04 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.12 | 0.07 | |
Methylcyclohexane | 0.07 | 0.13 | 0.06 | 0.05 | 0.06 | 0.04 | 0.04 | 0.05 | 0.10 | 0.07 | |
2,3,4-Trimethylpentane | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | |
2,2,4-Trimethylpentane | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.02 | 0.01 | 0.02 | 0.04 | 0.03 | |
2-Methylheptane | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | |
3-Methylheptane | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | |
n-Octane | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.06 | 0.04 | |
n-Nonane | 0.07 | 0.08 | 0.05 | 0.06 | 0.06 | 0.04 | 0.04 | 0.04 | 0.10 | 0.06 | |
n-Decane | 0.07 | 0.10 | 0.06 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.09 | 0.07 | |
Undecane | 0.10 | 0.09 | 0.10 | 0.20 | 0.04 | 0.05 | 0.06 | 0.06 | 0.17 | 0.10 | |
Dodecane | 0.04 | 0.06 | 0.09 | 0.13 | 0.05 | 0.07 | 0.07 | 0.06 | 0.05 | 0.07 | |
Alkene | Ethylene | 2.26 | 2.75 | 1.25 | 1.98 | 2.18 | 1.48 | 1.09 | 1.17 | 4.23 | 2.04 |
Propylene | 0.71 | 1.16 | 0.24 | 0.20 | 0.37 | 0.21 | 0.21 | 0.21 | 0.91 | 0.47 | |
trans-2-Butene | 0.03 | 0.06 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.08 | 0.03 | |
1-Butene | 0.06 | 0.06 | 0.04 | 0.04 | 0.03 | 0.07 | 0.07 | 0.07 | 0.11 | 0.06 | |
cis-2-Butene | 0.17 | 0.28 | 0.05 | 0.05 | 0.11 | 0.05 | 0.06 | 0.06 | 0.53 | 0.15 | |
1-Pentene | 0.05 | 0.05 | 0.04 | 0.03 | 0.11 | 0.06 | 0.07 | 0.08 | 0.06 | 0.06 | |
trans-2-Pentene | 0.05 | 0.10 | 0.02 | 0.04 | 0.03 | 0.01 | 0.02 | 0.00 | 0.09 | 0.04 | |
cis-2-Pentene | 0.03 | 0.08 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.06 | 0.02 | |
1-Hexene | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | |
Isoprene | 0.02 | 0.02 | 0.04 | 0.03 | 0.03 | 0.05 | 0.05 | 0.05 | 0.02 | 0.04 | |
Aromatic | Benzene | 1.52 | 0.78 | 0.95 | 0.86 | 0.95 | 1.77 | 0.51 | 0.24 | 2.87 | 1.16 |
Toluene | 4.22 | 3.03 | 2.67 | 3.65 | 4.02 | 5.59 | 1.74 | 0.83 | 5.24 | 3.44 | |
Ethylbenzene | 0.69 | 0.49 | 0.34 | 0.34 | 0.24 | 0.40 | 0.27 | 0.26 | 0.89 | 0.44 | |
m-/p-Xylene | 0.83 | 0.71 | 0.33 | 0.30 | 0.25 | 0.40 | 0.33 | 0.31 | 0.85 | 0.48 | |
o-Xylene | 0.62 | 0.35 | 0.22 | 0.21 | 0.18 | 0.24 | 0.17 | 0.15 | 0.53 | 0.30 | |
Styrene | 0.42 | 0.18 | 0.13 | 0.12 | 0.11 | 0.08 | 0.17 | 0.09 | 0.41 | 0.19 | |
Isopropylbenzene | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | |
n-Propylbenzene | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | |
m-Ethyltoluene | 0.04 | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.05 | 0.04 | |
p-Ethyltoluene | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 | 0.05 | 0.03 | |
1,3,5-Trimethylbenzene | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | |
o-Ethyltoluene | 0.03 | 0.04 | 0.02 | 0.03 | 0.02 | 0.04 | 0.02 | 0.02 | 0.03 | 0.03 | |
1,2,4-Trimethylbenzene | 0.07 | 0.08 | 0.06 | 0.06 | 0.06 | 0.04 | 0.04 | 0.04 | 0.08 | 0.06 | |
1,2,3-Trimethylbenzene | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | |
m-Diethylbenzene | 0.02 | 0.06 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | |
p-Diethylbenzene | 0.03 | 0.05 | 0.05 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | |
Acetylene | Acetylene | 1.80 | 1.81 | 1.10 | 1.03 | 1.18 | 2.15 | 0.32 | 0.06 | 2.33 | 1.31 |
TVOCs | 27.81 | 29.21 | 14.49 | 16.38 | 20.39 | 21.22 | 12.01 | 10.12 | 37.58 | 21.02 | |
TAVG b | 21.66 | 14.45 | 37.58 |
8:00–9:00 | 15:00–16:00 | 19:00–20:00 | 23:00–24:00 | Site–AVG a | |
Urban area | 28.10 | 19.38 | 25.93 | 13.21 | 21.66 |
JX | 36.85 | 26.52 | 33.02 | 14.85 | 27.81 |
YX | 38.57 | 24.74 | 34.17 | 19.37 | 29.21 |
LG | 18.56 | 12.72 | 17.64 | 9.05 | 14.49 |
DX | 21.17 | 14.40 | 19.55 | 10.40 | 16.38 |
HX | 25.35 | 18.51 | 25.28 | 12.40 | 20.39 |
Suburbs | 17.40 | 14.40 | 17.75 | 8.26 | 14.45 |
YY | 25.83 | 20.78 | 25.96 | 12.31 | 21.22 |
XA | 14.38 | 12.14 | 14.67 | 6.85 | 12.01 |
YC | 11.98 | 10.27 | 12.61 | 5.62 | 10.12 |
Industrial site (JL) | 49.33 | 32.85 | 43.85 | 24.30 | 37.58 |
Period-AVG b | 26.74 | 19.19 | 25.10 | 12.74 |
Urban Areas | Suburban Areas | Industrial Area | ||||||
---|---|---|---|---|---|---|---|---|
VOCs | OFP | OFP Ratio | VOCs | OFP | OFP Ratio | VOCs | OFP | OFP Ratio |
Ethylene | 18.26 | 29.1% | Ethylene | 10.92 | 26.8% | Ethylene | 37.02 | 32.3% |
Toluene | 13.65 | 21.7% | Toluene | 10.55 | 25.9% | Toluene | 20.33 | 17.7% |
Propylene | 6.07 | 9.7% | m-/p-Xylene | 3.30 | 8.1% | Propylene | 10.35 | 9.0% |
m-/p-Xylene | 4.59 | 7.3% | Propylene | 2.38 | 5.8% | m-/p-Xylene | 8.08 | 7.0% |
o-Xylene | 2.34 | 3.7% | o-Xylene | 1.39 | 3.4% | cis-2-Butene | 7.42 | 6.5% |
cis-2-Butene | 1.82 | 2.9% | Propane | 1.02 | 2.5% | o-Xylene | 3.93 | 3.4% |
Propane | 1.46 | 2.3% | Ethylbenzene | 0.91 | 2.2% | Ethylbenzene | 2.62 | 2.3% |
Acetylene | 1.29 | 2.0% | n-Butane | 0.84 | 2.1% | Propane | 2.23 | 1.9% |
Ethylbenzene | 1.24 | 2.0% | Acetylene | 0.79 | 1.9% | Acetylene | 2.17 | 1.9% |
n-Butane | 0.96 | 1.5% | cis-2-Butene | 0.77 | 1.9% | Benzene | 1.98 | 1.7% |
VOCs | Non-Cancer Risk-HQ | Cancer Risk-CR | ||||
---|---|---|---|---|---|---|
Urban Area | Suburbs | JL | Urban Area | Suburbs | JL | |
Benzene | 0.494 | 0.409 | 1.399 | 6.7 × 10−7 | 5.6 × 10−7 | 1.9 × 10−6 |
Toluene | 0.101 | 0.078 | 0.151 | - | - | - |
Ethylbenzene | 0.011 | 0.008 | 0.024 | 1.1 × 10−7 | 8.4 × 10−8 | 2.4 × 10−7 |
m-/p-Xylene | 0.006 | 0.005 | 0.011 | - | - | - |
o-Xylene | 0.004 | 0.002 | 0.007 | - | - | - |
Styrene | 0.002 | 0.001 | 0.005 | 3.3 × 10−9 | 2.0 × 10−9 | 7.1 × 10−9 |
SUM | 0.619 | 0.504 | 1.597 | 7.9 × 10−7 | 6.4 × 10−7 | 2.2 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Shen, Z.; Sun, J.; Lei, Y.; Zhang, Y.; Wang, X. Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China. Atmosphere 2020, 11, 1365. https://doi.org/10.3390/atmos11121365
He K, Shen Z, Sun J, Lei Y, Zhang Y, Wang X. Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China. Atmosphere. 2020; 11(12):1365. https://doi.org/10.3390/atmos11121365
Chicago/Turabian StyleHe, Kun, Zhenxing Shen, Jian Sun, Yali Lei, Yue Zhang, and Xin Wang. 2020. "Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China" Atmosphere 11, no. 12: 1365. https://doi.org/10.3390/atmos11121365
APA StyleHe, K., Shen, Z., Sun, J., Lei, Y., Zhang, Y., & Wang, X. (2020). Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China. Atmosphere, 11(12), 1365. https://doi.org/10.3390/atmos11121365