Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explorative Data Analysis
2.1.1. Classifying Wells Based on Dominant Recharge Mechanism
2.1.2. Tree–Groundwater Relationships
2.2. Selecting the Appropriate Tree Ring Network
2.3. Groundwater Level Reconstructions
3. Results
3.1. Tree Ring-Groundwater Relationships
3.2. Model Comparisons
3.3. Tree Ring Records Used for Different Recharge Mechanisms
3.4. Final Groundwater Level Reconstructions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. Chapter 2: High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; pp. 131–202. [Google Scholar]
- Markovich, K.H.; Manning, A.H.; Condon, L.; McIntosh, J.C. Mountain-Block Recharge: A Review of Current Understanding. Water Resour. Res. 2019, 55, 8278–8304. [Google Scholar] [CrossRef] [Green Version]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Seager, R.; Heim, R.R., Jr.; Vose, R.S.; Herweijer, C.; Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Sauchyn, D.J.; Barrow, E.M.; Hopkinson, R.F.; Leavitt, P.R. Aridity on the Canadian Prairies. Geogr. Phys. Quat. 2002, 56, 247–259. [Google Scholar]
- Lutz, E.R.; Hamlet, A.F.; Littell, J.S. Paleoreconstruction of cool season precipitation and warm season streamflow in the Pacific Northwest with applications to climate change assessments. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Barbeta, A.; Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.; Luckman, B.H. An investigation of the snowpack signal in moisture-sensitive trees from the Southern Canadian Cordillera. Dendrochronologia 2016, 38, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Gedalof, Z.; Peterson, D.L.; Mantua, N.J. Columbia River Flow And Drought Since 1750. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1579–1592. [Google Scholar] [CrossRef]
- Maxwell, R.; Harley, G.L.; Maxwell, J.T.; Rayback, S.A.; Pederson, N.; Cook, E.R.; Barclay, D.J.; Li, W.; Rayburn, J.A. An interbasin comparison of tree-ring reconstructed streamflow in the eastern United States. Hydrol. Process. 2017, 31, 2381–2394. [Google Scholar] [CrossRef]
- Maxwell, R.; Hessl, A.; Cook, E.R.; Pederson, N. A multispecies tree ring reconstruction of Potomac River streamflow (950–2001). Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pederson, N.; Leland, C.; Nachin, B.; E Hessl, A.; Bell, A.R.; Benito, D.M.; Saladyga, T.; Suran, B.; Brown, P.M.; Davi, N. Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket. Agric. For. Meteorol. 2013, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Littell, J.S.; Pederson, G.T.; Gray, S.T.; Tjoelker, M.; Hamlet, A.F.; Woodhouse, C.A. Reconstructions of Columbia River Streamflow from Tree-Ring Chronologies in the Pacific Northwest, USA. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 1121–1141. [Google Scholar] [CrossRef]
- Muñoz, A.; González-Reyes, A.; Lara, A.; Sauchyn, D.; Christie, D.; Puchi, P.; Urrutia-Jalabert, R.; Toledo-Guerrero, I.; Aguilera-Betti, I.; Mundo, I.; et al. Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35 S–42 S) during the last 400 years inferred from tree-ring records. Clim. Dyn. 2016, 47, 4051–4066. [Google Scholar] [CrossRef]
- Hart, S.J.; Smith, D.J.; Clague, J.J. A multi-species dendroclimatic reconstruction of Chilko River streamflow, British Columbia, Canada. Hydrol. Process. 2010, 24, 2752–2761. [Google Scholar] [CrossRef]
- Güner, H.T.; Harley, G.L.; Köse, N. A 200-year reconstruction of Kocasu River (Sakarya River Basin, Turkey) streamflow derived from a tree-ring network. Int. J. Biometeorol. 2016, 61, 427–437. [Google Scholar] [CrossRef]
- Harley, G.L.; Maxwell, J.T.; Larson, E.; Grissino-Mayer, H.D.; Henderson, J.; Huffman, J. Suwannee River flow variability 1550–2005 CE reconstructed from a multispecies tree-ring network. J. Hydrol. 2017, 544, 438–451. [Google Scholar] [CrossRef]
- Gray, S.T.; Lukas, J.J.; Woodhouse, C.A. Millennial-Length Records of Streamflow from Three Major Upper Colorado River Tributaries1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 702–712. [Google Scholar] [CrossRef]
- Gallant, A.J.E.; Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783-1988. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Meko, D.M.; Touchan, R. A tree-ring reconstruction of streamflow in the Santa Fe River, New Mexico. J. Hydrol. 2011, 397, 118–127. [Google Scholar] [CrossRef]
- Beriault, A.L.; Sauchyn, D.J. Tree-Ring Reconstructions of Streamflow in the Churchill River Basin, Northern Saskatchewan. Can. Water Resour. J. / Rev. Can. des Ressour. Hydr. 2006, 31, 249–262. [Google Scholar] [CrossRef]
- Perez-Valdivia, C.; Sauchyn, D. Tree-ring reconstruction of groundwater levels in Alberta, Canada: Long term hydroclimatic variability. Dendrochronologia 2011, 29, 41–47. [Google Scholar] [CrossRef]
- Ferguson, G.; George, S.S. Historical and Estimated Ground Water Levels Near Winnipeg, Canada, and Their Sensitivity To Climatic Variability. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1249–1259. [Google Scholar] [CrossRef]
- Creutzfeldt, B.; Heinrich, I.; Merz, B. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations. J. Hydrol. 2015, 529, 640–649. [Google Scholar] [CrossRef]
- Gholami, V.; Torkaman, J.; Khaleghi, M.R. Dendrohydrogeology in paleohydrogeologic studies. Adv. Water Resour. 2017, 110, 19–28. [Google Scholar] [CrossRef]
- Gholami, V.; Chau, K.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [Google Scholar] [CrossRef]
- Allen, D.M.; Whitfield, P.H.; Werner, A. Groundwater level responses in temperate mountainous terrain: Regime classification, and linkages to climate and streamflow. Hydrol. Process. 2010, 24, 3392–3412. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought reconstructions for the continental US. J. Clim. 1999, 12, 1145–1163. [Google Scholar] [CrossRef] [Green Version]
- International Tree Ring Database, National Centers for Environmental Information (NCEI). Available online: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (accessed on 7 November 2019).
- Ministry of Environment and Climate Change Strategy, Provincial Groundwater Observation Well Network. Available online: https://catalogue.data.gov.bc.ca/dataset/57c55f10-cf8e-40bb-aae0-2eff311f1685 (accessed on 25 April 2019).
- Urrutia, R.B.; Lara, A.; Villalba, R.; Christie, D.A.; Le Quesne, C.; Cuq, A. Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Commission for Environmental Cooperation (CEC). Ecological Regions of North America: Toward a Common Perspective; Communications and Public Outreach Department, CEC: Montreal, QC, Canada, 1997; 71p. [Google Scholar]
- Chilton, R.R.H. A Summary of Climatic Regimes of British Columbia; Province of British Columbia, Ministry of Environment Assessment and Planning Division: Victoria, BC, Canada, 1981; 46p. [Google Scholar]
- Merritt, W.; Alila, Y.; Barton, M.; Taylor, B.; Cohen, S.; Neilsen, D. Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J. Hydrol. 2006, 326, 79–108. [Google Scholar] [CrossRef]
- Moore, R.D.; Allen, D.M.; Stahl, K. Climate Change and Low Flows: Influences of Groundwater and Glaciers. Final Report for Climate Change Action Fund Project A875; Hydrology Applications Group, Environment Canada: Vancouver, BC, Canada, 2007; 201p. [Google Scholar]
- Eaton, B.; Moore, R.D. Regional hydrology. In Compendium of Forest Hydrology and Geomorphology in British Columbia; Pike, R.G., Redding, T.E., Moore, R.D., Winkler, R.D., Bladon, K.D., Eds.; Ministry of Forests and Range, Forest Science Program: Kamloops, BC, Canada, 2010; pp. 85–110. [Google Scholar]
- Brewer, R.; Cohen, S.; Embley, E.; Hamilton, S.; Julian, M.; Kulkarni, T.; Taylor, B.; Tansey, J.; VanWynsberghe, R.; Whitfield, P. Water Management and Climate Change in the Okanagan Basin; Cohen, S., Kulkarni, T., Eds.; Environment Canada & University of British Columbia: Vancouver, BC, Canada, 2001; 75p. [Google Scholar]
- Moore, R.D.; Spittlehouse, D.L.; Whitfield, P.H.; Stahl, K. Weather and Climate. In Compendium of Forest Hydrology and Geomorphology in British Columbia; Pike, R.G., Redding, T.E., Moore, R.D., Winkler, R.D., Bladon, K.D., Eds.; Ministry of Forests and Range, Forest Science Program: Kamloops, BC, Canada, 2010; pp. 47–84. [Google Scholar]
- MacKinnon, A.; Meidinger, D.; Klinka, K. Use of the biogeoclimatic ecosystem classification system in British Columbia. For. Chron. 1992, 68, 100–120. [Google Scholar] [CrossRef] [Green Version]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia, Special Report Series 6; B.C. Ministry of Forests and Range, Forest Science Program: Kamloops, BC, Canada, 1991; 330p.
- Woodhouse, C.A. A 431-Yr reconstruction of Western Colorado snowpack from tree rings. J. Clim. 2003, 16, 1551–1561. [Google Scholar] [CrossRef]
- Pederson, G.T.; Gray, S.T.; Woodhouse, C.A.; Betancourt, J.L.; Fagre, D.B.; Littell, J.S.; Watson, E.; Luckman, B.H.; Graumlich, L.J. The Unusual Nature of Recent Snowpack Declines in the North American Cordillera. Science 2011, 333, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Harley, G.L.; Maxwell, R.S.; Black, B.A.; Bekker, M.F. A multi-century, tree-ring-derived perspective of the North Cascades (USA) 2014–2016 snow drought. Clim. Chang. 2020, 162, 127–143. [Google Scholar] [CrossRef]
- Mood, B.J.; Coulthard, B.; Smith, D.J. Three hundred years of snowpack variability in southwestern British Columbia reconstructed from tree-rings. Hydrol. Process. 2020, 34, 5123–5133. [Google Scholar] [CrossRef]
- Schoenemann, S.W.; Martin, J.T.; Pederson, G.T.; McWethy, D.B. 2200-Year tree-ring and lake-sediment based snowpack reconstruction for the norther Rocky Mountains highlights the historic magnitude of recent snow drought. Quat. Sci. Adv. 2020, 2, 1–13. [Google Scholar]
- Water Survey of Canada, Environment and Climate Change Canada Hydrometric Data. Available online: https://wateroffice.ec.gc.ca/index_e.html (accessed on 31 August 2019).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 11 August 2018).
- Grissino-Mayer, H.D.; Fritts, H.C. The International Tree-Ring Data Bank: An enhanced global database serving the global scientific community. Holocene 1997, 7, 235–238. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Cook, E.R. A Time Series Analysis Approach to Tree-Ring Standardization; Tree-Ring Laboratory, University of Arizona: Tucson, AZ, USA, 1985; 171p. [Google Scholar]
- Cook, E.; Peters, K. The smoothing spline, a new approach to standardising forest interior tree-ring. Tree-Ring Bull. 1981, 41, 45–53. [Google Scholar]
- Holmes, R.L.; Adams, R.K.; Fritts, H.C. User Manual for Program ARSTAN. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; Laboratory of Tree Ring Research, University of Arizona: Tucson, AZ, USA, 1986; pp. 50–65. [Google Scholar]
- Mosteller, F.; Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics; Addison-Wesley Publishing Company: Reading, PA, USA, 1977. [Google Scholar]
- Dickinson, J.E.; Hanson, R.T.; Predmore, S.K. Hydroclimate: Hydrologic and Climatic Analysis Toolkit. In Techniques and Methods; US Geological Survey: Reston, VA, USA, 2014; p. 49. [Google Scholar]
- Zang, C.S.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Briffa, K.R. Tree-climate relationships and dendroclimatological reconstructions in the British Isles. Ph.D. Thesis, University of East Anglia, Norwich, UK, 1984. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in The Environmental Sciences; Kluwer Academic: Boston, MA, USA, 1990; 340p. [Google Scholar]
- Cook, E.D. Columbia University Tree Ring Lab. Available online: https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (accessed on 27 August 2019).
- Stagge, J.H.; Rosenberg, D.E.; DeRose, R.J.; Rittenour, T.M. Monthly paleostream reconstruction from annual tree-ring chronologies. J. Hydrol. 2018, 557, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. Coefficient alpha for a principal component and the Kaiser-Guttman Rule. Psychol. Rep. 1991, 68, 855–858. [Google Scholar] [CrossRef]
- Kaiser, H.F. Alpha-Reliability of Components and Factors; Bureau of Educational Research, College of Education, University of Illinois: Chicago, IL, USA, 1957; (unpublished work). [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Meko, D.M. Dendroclimatic Reconstruction with Time Varying Predictor Subsets of Tree Indices. J. Clim. 1997, 10, 687–696. [Google Scholar] [CrossRef]
- Toews, M.W.; Allen, D.M.; Whitfield, P.H. Recharge sensitivity to local and regional precipitation in semiarid midlatitude regions. Water Resour. Res. 2009, 45, 1–10. [Google Scholar] [CrossRef]
- Suarez, A.M.G.; Butler, C.J.; Baillie, M.G.L. Climate signal in tree-ring chronologies in a temperate climate: A multi-species approach. Dendrochronologia 2009, 27, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.T.; Harley, G.L. Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA. Clim. Dyn. 2016, 49, 1479–1493. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Cook, E.R.; Lall, U.; Devineni, N.; Seager, R.; Eggleston, K.; Vranes, K.P. Is an Epic Pluvial Masking the Water Insecurity of the Greater New York City Region? J. Clim. 2013, 26, 1339–1354. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F.C.; Piermattei, A.; Seim, A.; Krusic, P.J.; Büntgen, U.; He, M.; Kirdyanov, A.V.; Luterbacher, J.; Schneider, L.; Seftigen, K.; et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quat. Sci. Rev. 2020, 230, 106074. [Google Scholar] [CrossRef]
All Wells (May–Nov) | Streamflow-Driven (July) | High-Elevation Recharge-Driven (June–August) | Low-Elevation Recharge-Driven (August–October) | |
---|---|---|---|---|
Climate footprint | RE: 0.503/0.411 | RE: 0.452/0.247 | RE: 0.375/0.245 | RE: 0.540/0.291 |
CE: 0.503/0.291 | CE: 0.452/0.232 | CE: 0.375/0.109 | CE: 0.540/0.245 | |
r: 0.709/0.587 | r: 0.673/0.533 | r: 0.621/0.339 | r: 0.754/0.714 | |
# tree ring records: 31 | # tree ring records: 30 | # tree ring records: 28 | # tree ring records: 28 | |
% variance (adjusted): 50.27 (47.78) | % variance (adjusted): 45.29 (39.21) | % variance (adjusted): 38.56 (35.49) | % variance (adjusted): 56.85 (51.46) | |
Coast Mountain | RE: 0.412/0.496 | RE: 0.236/0.250 | RE: 0.220/0.349 | RE: 0.489/0.009 |
CE: 0.412/0.394 | CE: 0.236/0.235 | CE: 0.220/0.231 | CE: 0.489/−0.055 | |
r: 0.633/0.833 | r: 0.489/0.658 | r: 0.470/0.64 | r: 0.765/0.804 | |
# tree ring records: 6 | # tree ring records: 6 | # tree ring records: 6 | # tree ring records: 7 | |
% variance (adjusted): 40.07 (37.07) | % variance (adjusted): 23.91 (20.10) | % variance (adjusted): 22.09 (18.19) | % variance (adjusted): 58.52 (56.21) | |
South Coast Mountain * | RE: 0.412/0.496 | RE: 0.236/0.250 | RE: 0.220/0.349 | RE: 0.489/0.009 |
CE: 0.412/0.394 | CE: 0.236/0.235 | CE: 0.220/0.231 | CE: 0.489/−0.055 | |
s r: 0.633/0.833 | r: 0.489/0.658 | r: 0.470/0.64 | r: 0.765/0.804 | |
# tree ring records: 6 | # tree ring records: 6 | # tree ring records: 6 | # tree ring records: 7 | |
% variance (adjusted): 40.07 (37.07) | % variance (adjusted): 23.91 (20.10) | % variance (adjusted): 22.09 (18.19) | % variance (adjusted): 58.52 (56.21) | |
Plateau | RE: 0.463/−2.24 | RE: 0.431/−0.972 | RE: 0.032/−1.659 | RE: 0.727/−3.887 |
CE: 0.463/−2.895 | CE: 0.431/−1.012 | CE: 0.032/−2.139 | CE: 0.727/−4.207 | |
r: 0.685/−0.31 | r: 0.657/0.169 | r: 0.383/−0.305 | r: 0.853/−0.325 | |
# tree ring records: 13 | # tree ring records: 10 | # tree ring records: 10 | # tree ring records: 13 | |
% variance (adjusted): 46.92 (41.02) | % variance (adjusted): 43.16 (36.84) | % variance (adjusted): 14.67 (5.19) | % variance (adjusted): 72.76 (69.35) | |
North Plateau | No model possible | RE: 0.254/−0.471 CE: 0.254/−0.501 r: 0.510/0.135 # tree ring records: 1 % variance (adjusted): 26.01 (22.31) | No model possible | No model possible |
Mountain | RE: 0.684/−0.156 | RE: 0.463/0.081 | RE: 0.485/−0.143 | RE: 0.912/−0.388 |
CE: 0.684/−0.390 | CE: 0.463/0.062 | CE: 0.485/−0.35 | CE: 0.912/−0.479 | |
r: 0.829/−0.031 | r: 0.681/0.300 | r: 0.702/−0.074 | r: 0.956/0.120 | |
# tree ring records: 40 | # tree ring records: 34 | # tree ring records: 35 | # tree ring records: 38 | |
% variance (adjusted): 68.72 (67.16) | % variance (adjusted): 46.38 (43.70) | % variance (adjusted): 49.28 (46.74) | % variance (adjusted): 91.39 (90.31) | |
North Mountain | RE: 0.520/0.316 | RE: 0.411/0.109 | RE: 0.422/0.102 | RE: 0.647/0.319 |
CE: 0.520/0.178 | CE: 0.411/0.091 | CE: 0.422/−0.06 | CE: 0.6470.274 | |
r: 0.721/0.444 | r: 0.641/0.343 | r: 0.660/0.203 | r: 0.822/0.686 | |
# tree ring records: 25 | # tree ring records: 23 | # tree ring records: 23 | # tree ring records: 24 | |
% variance (adjusted): 51.98 (49.58) | % variance (adjusted): 41.09 (34.54) | % variance (adjusted): 43.56 (40.74) | % variance (adjusted): 67.57 (65.77) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, S.C.; Allen, D.M.; Kohfeld, K.E. Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths. Atmosphere 2020, 11, 1374. https://doi.org/10.3390/atmos11121374
Hunter SC, Allen DM, Kohfeld KE. Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths. Atmosphere. 2020; 11(12):1374. https://doi.org/10.3390/atmos11121374
Chicago/Turabian StyleHunter, Stephanie C., Diana M. Allen, and Karen E. Kohfeld. 2020. "Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths" Atmosphere 11, no. 12: 1374. https://doi.org/10.3390/atmos11121374
APA StyleHunter, S. C., Allen, D. M., & Kohfeld, K. E. (2020). Comparing Approaches for Reconstructing Groundwater Levels in the Mountainous Regions of Interior British Columbia, Canada, Using Tree Ring Widths. Atmosphere, 11(12), 1374. https://doi.org/10.3390/atmos11121374