Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review
Abstract
:1. Introduction
2. Thermodynamic Equilibrium
2.1. Theoretical Basis
2.2. Inorganic Thermodynamics Models
2.2.1. EQUISOLV
2.2.2. ISORROPIA
2.2.3. EQSAM
2.2.4. MOSAIC: MTEM, MESA and ASTEM
2.2.5. UHAERO
2.2.6. PD-FiTE
2.2.7. Performance Comparison of Inorganic Thermodynamics Models
2.3. Organic Thermodynamics Models or Components
2.3.1. MPMPO
2.3.2. UHAERO For Mixed Organic-Inorganic Systems
2.3.3. PD-FiTE for Organics
2.3.4. UNIPAR
2.3.5. SOAP
2.3.6. Updated Pankow Scheme
2.3.7. Pye CMAQ Extensions
2.3.8. BAT
2.4. Hygroscopic Behavior of Mixed Organic-Inorganic Aerosols and Liquid-Liquid Phase Separation Effects
2.5. Heterogeneous Efflorescence
2.6. Models for the Pure Liquid Vapor Pressure of Organics
2.7. Surface Tension Models for Aqueous Aerosols
2.8. Nanosize Effects on Aerosol Thermodynamics and Morphology
2.8.1. Chemical Potential in the Small Size Limit
2.8.2. Effect of Particle Size on Phase Transitions and Hygroscopic Growth
2.8.3. Size Impact on LLPS in Mixed Organic-Inorganic Aerosol
3. Gas-Aerosol Mass Transfer Kinetics
3.1. Surface Condensation-Evaporation Models for Inorganic Aerosol
3.1.1. Formulations in EQUISOLV I and II
3.1.2. ASTEM Module in MOSAIC
3.1.3. Hybrid Dissolution Solver HyDiS-1.0
3.2. Mass-Transfer Formulations for Organic Aerosols
3.2.1. Condensed Phase Reactive Mass Transfer Models
3.2.2. Organic Aerosol Diffusivity Models
3.2.3. Organic Aerosol Mass Accommodation Coefficients
3.2.4. Size Dependence of Mass Accommodation Coefficients
3.2.5. Organic Aerosol Mass Transfer Summary
4. Aerosol Heterogeneous Chemistry
4.1. Brief Theoretical Overview
4.2. Inorganic Aerosol Chemistry
4.3. Organic Aerosol Chemistry
4.3.1. Gas Phase Processes
4.3.2. SOA Formation Due to Aerosol Phase and Cloud Chemistry
5. Summary
5.1. State of Thermodynamics Models
5.2. Need for Improvement in the Small Particle Limit
5.3. Need for Improved Representation of Organics in 3-D Model Thermodynamics
Current Options for 3-D Models
5.4. Need for Aerosol Heterogeneous Chemistry
5.5. Alternative Modeling Approaches to Deal With Aerosol Physicochemical Complexity
Funding
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Lou, S.; Liao, H.; Zhu, B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos. Environ. 2014, 85, 123–138. [Google Scholar] [CrossRef]
- Hung, H.M.; Hoffmann, M.R. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase. Environ. Sci. Technol. 2015, 49, 13768–13776. [Google Scholar] [CrossRef] [PubMed]
- Mauderly, J.L.; Chow, J.C. Health Effects of Organic Aerosols. Inhal. Toxicol. 2008, 20, 257–288. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2014, 25, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chameides, W.L.; Yu, H.; Liu, S.C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C.S.; Saylor, R.D.; Luo, C.; et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? Proc. Natl. Acad. Sci. USA 1999, 96, 13626–13633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, C.T.; Driscoll, K.M.; Mitchell, M.J.; Raynal, D.J. Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ. Pollut. 2003, 123, 327–336. [Google Scholar] [CrossRef]
- Menz, F.C.; Seip, H.M. Acid rain in Europe and the United States: An update. Environ. Sci. Policy 2004, 7, 253–265. [Google Scholar] [CrossRef]
- Mann, G.W.; Carslaw, K.S.; Reddington, C.L.; Pringle, K.J.; Schulz, M.; Asmi, A.; Spracklen, D.V.; Ridley, D.A.; Woodhouse, M.T.; Lee, L.A.; et al. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos. Chem. Phys. 2014, 14, 4679–4713. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Riemer, N.; Ault, A.P.; West, M.; Craig, R.L.; Curtis, J.H. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 2019, 57, 187–249. [Google Scholar] [CrossRef]
- Merikanto, J.; Spracklen, D.V.; Mann, G.W.; Pickering, S.J.; Carslaw, K.S. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009, 9, 8601–8616. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Riipinen, I.; Pierce, J.R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; et al. Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 2011, 11, 3865–3878. [Google Scholar] [CrossRef] [Green Version]
- Khvorostyanov, V.I.; Curry, J.A. The Theory of Ice Nucleation by Heterogeneous Freezing of Deliquescent Mixed CCN. Part I: Critical Radius, Energy, and Nucleation Rate. J. Atmos. Sci. 2004, 61, 2676–2691. [Google Scholar] [CrossRef]
- Sun, Y.; Du, W.; Wang, Q.; Zhang, Q.; Chen, C.; Chen, Y.; Chen, Z.; Fu, P.; Wang, Z.; Gao, Z.; et al. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry. Environ. Sci. Technol. 2015, 49, 11340–11347. [Google Scholar] [CrossRef]
- Sandrini, S.; van Pinxteren, D.; Giulianelli, L.; Herrmann, H.; Poulain, L.; Facchini, M.C.; Gilardoni, S.; Rinaldi, M.; Paglione, M.; Turpin, B.J.; et al. Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: Implications for secondary aerosol formation. Atmos. Chem. Phys. 2016, 16, 10879–10897. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, E.; Vlasenko, S.; Martin, S.T.; Koop, T.; Pöschl, U. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 2009, 9, 9491–9522. [Google Scholar] [CrossRef] [Green Version]
- Saukko, E.; Lambe, A.T.; Massoli, P.; Koop, T.; Wright, J.P.; Croasdale, D.R.; Pedernera, D.A.; Onasch, T.B.; Laaksonen, A.; Davidovits, P.; et al. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 2012, 12, 7517–7529. [Google Scholar] [CrossRef] [Green Version]
- Perraud, V.; Bruns, E.A.; Ezell, M.J.; Johnson, S.N.; Yu, Y.; Alexander, M.L.; Zelenyuk, A.; Imre, D.; Chang, W.L.; Dabdub, D.; et al. Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc. Natl. Acad. Sci. USA 2012, 109, 2836–2841. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Perraud, V.; Wingen, L.M.; Finlayson-Pitts, B.J. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene. Proc. Natl. Acad. Sci. USA 2014, 111, 7552–7557. [Google Scholar] [CrossRef] [Green Version]
- Pajunoja, A.; Lambe, A.T.; Hakala, J.; Rastak, N.; Cummings, M.J.; Brogan, J.F.; Hao, L.; Paramonov, M.; Hong, J.; Prisle, N.L.; et al. Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys. Res. Lett. 2015, 42, 3063–3068. [Google Scholar] [CrossRef]
- Mallet, M.; Roger, J.C.; Despiau, S.; Putaud, J.P.; Dubovik, O. A study of the mixing state of black carbon in urban zone. J. Geophys. Res. Atmos. 2004, 109, D04202. [Google Scholar] [CrossRef]
- Deboudt, K.; Flament, P.; Choël, M.; Gloter, A.; Sobanska, S.; Colliex, C. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. Geophys. Res. Atmos. 2010, 115, D24207. [Google Scholar] [CrossRef] [Green Version]
- Healy, R.M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; et al. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris. Atmos. Chem. Phys. 2012, 12, 1681–1700. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, P.; Sun, G.; Zhou, S.; Yuan, Q.; Wang, W. Cloud residues and interstitial aerosols from non-precipitating clouds over an industrial and urban area in northern China. Atmos. Environ. 2011, 45, 2488–2495. [Google Scholar] [CrossRef]
- Dong, Z.; Kang, S.; Guo, J.; Zhang, Q.; Wang, X.; Qin, D. Composition and mixing states of brown haze particle over the Himalayas along two transboundary south-north transects. Atmos. Environ. 2017, 156, 24–35. [Google Scholar] [CrossRef]
- Moroni, B.; Cappelletti, D.; Crocchianti, S.; Becagli, S.; Caiazzo, L.; Traversi, R.; Udisti, R.; Mazzola, M.; Markowicz, K.; Ritter, C.; et al. Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands). Atmos. Environ. 2017, 156, 135–145. [Google Scholar] [CrossRef]
- Aksoyoglu, S.; Ciarelli, G.; El-Haddad, I.; Baltensperger, U.; Prévôt, A.S.H. Secondary inorganic aerosols in Europe: Sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate. Atmos. Chem. Phys. 2017, 12, 7757–7773. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Seinfeld, J.H. Evolution of nanoparticle size and mixing state near the point of emission. Atmos. Environ. 2004, 38, 1839–1850. [Google Scholar] [CrossRef]
- Healy, R.M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A.S.H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M.L.; Jeong, C.H.; et al. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements. Atmos. Chem. Phys. 2013, 13, 9479–9496. [Google Scholar] [CrossRef] [Green Version]
- Treffeisen, R.; Tunved, P.; Strö, J.; Herber, A.; Bareiss, J.; Helbig, A.; Stone, R.S.; Hoyningen-Huene, W.; Kreji, R.; Stohl, A.; et al. Arctic smoke—Aerosol characteristics during a record smoke event in the European Arctic and its radiative impact. Atmos. Chem. Phys. 2007, 7, 3035–3053. [Google Scholar] [CrossRef] [Green Version]
- Abbatt, J.P.D.; Leaitch, W.R.; Aliabadi, A.A.; Bertram, A.K.; Blanchet, J.P.; Boivin-Rioux, A.; Bozem, H.; Burkart, J.; Chang, R.Y.W.; Charette, J.; et al. Overview paper: New insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 2019, 19, 2527–2560. [Google Scholar] [CrossRef] [Green Version]
- Pun, B.K.; Griffin, R.J.; Seigneur, C.; Seinfeld, J.H. Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents. J. Geophys. Res. Atmos. 2002, 107, 4333. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Zuend, A.; Bertram, A.K.; Seinfeld, J.H. Gas–particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 2013, 15, 11441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuend, A.; Seinfeld, J.H. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation. Atmos. Chem. Phys. 2012, 12, 3857–3882. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Marcolli, C.; Krieger, U.K.; Lienhard, D.M.; Peter, T. Morphologies of mixed organic/inorganic/aqueous aerosol droplets. Faraday Discuss. 2013, 165, 289. [Google Scholar] [CrossRef]
- Li, R.; Hu, Y.; Li, L.; Fu, H.; Chen, J. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing. Atmos. Chem. Phys. 2017, 17, 5079–5093. [Google Scholar] [CrossRef] [Green Version]
- Pajunoja, A.; Hu, W.; Leong, Y.J.; Taylor, N.F.; Miettinen, P.; Palm, B.B.; Mikkonen, S.; Collins, D.R.; Jimenez, J.L.; Virtanen, A. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmos. Chem. Phys. 2016, 16, 11163–11176. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.P.; Gong, Z.; Harder, T.H.; de Sá, S.S.; Wang, B.; Castillo, P.; China, S.; Liu, Y.; O’Brien, R.E.; Palm, B.B.; et al. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmos. Chem. Phys. 2017, 17, 1759–1773. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 2000, 27, 217–220. [Google Scholar] [CrossRef]
- George, C.; Ammann, M.; D’Anna, B.; Donaldson, D.J.; Nizkorodov, S.A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. [Google Scholar] [CrossRef] [Green Version]
- Kolb, C.E.; Worsnop, D.R. Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem. 2012, 63, 471–491. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Dingenen, R.V.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- De Gouw, J.; Jimenez, J.L. Organic Aerosols in the Earth’s Atmosphere. Environ. Sci. Technol. 2009, 43, 7614–7618. [Google Scholar] [CrossRef] [Green Version]
- Putaud, J.P.; Dingenen, R.V.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.; et al. A European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Ehn, M.; Thornton, J.A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A large source of low-volatility secondary organic aerosol. Nature 2014, 506, 476–479. [Google Scholar] [CrossRef]
- Tröstl, J.; Chuang, W.K.; Gordon, H.; Heinritzi, M.; Yan, C.; Molteni, U.; Ahlm, L.; Frege, C.; Bianchi, F.; Wagner, R.; et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 2016, 533, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, E.F.; Mironov, G.N.; Pöhlker, C.; Chi, X.; Krüger, M.L.; Shiraiwa, M.; Förster, J.D.; Pöschl, U.; Vlasenko, S.S.; Ryshkevich, T.I.; et al. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign. Atmos. Chem. Phys. 2015, 15, 8847–8869. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.P.S.; Liggio, J.; Li, S.M.; Nenes, A.; Abbatt, J.P.D. Suppression in droplet growth kinetics by the addition of organics to sulfate particles. J. Geophys. Res. Atmos. 2014, 119, 12222–12232. [Google Scholar] [CrossRef]
- Robinson, C.B.; Schill, G.P.; Zarzana, K.J.; Tolbert, M.A. Impact of Organic Coating on Optical Growth of Ammonium Sulfate Particles. Environ. Sci. Technol. 2013, 47, 13339–13346. [Google Scholar] [CrossRef]
- Choi, M.Y.; Chan, C.K. The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic Aerosols. Environ. Sci. Technol. 2002, 36, 2422–2428. [Google Scholar] [CrossRef]
- Zardini, A.A.; Sjogren, S.; Marcolli, C.; Krieger, U.K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmos. Chem. Phys. 2008, 8, 5589–5601. [Google Scholar] [CrossRef] [Green Version]
- Ravishankara, A.R. Heterogeneous and multiphase chemistry in the troposphere. Science 1997, 276, 1058–1065. [Google Scholar] [CrossRef]
- Jacob, D.J. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zhang, Z.; Docherty, K.S.; Zhang, H.; Budisulistiorini, S.H.; Rubitschun, C.L.; Shaw, S.L.; Knipping, E.M.; Edgerton, E.S.; Kleindienst, T.E.; et al. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds. Environ. Sci. Technol. 2012, 46, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cappa, C.D.; Jathar, S.H.; McVay, R.C.; Ensberg, J.J.; Kleeman, M.J.; Seinfeld, J.H. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2014, 111, 5802–5807. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [Green Version]
- Karydis, V.A.; Tsimpidi, A.P.; Pozzer, A.; Astitha, M.; Lelieveld, J. Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys. 2016, 16, 1491–1509. [Google Scholar] [CrossRef] [Green Version]
- Dupart, Y.; King, S.M.; Nekat, B.; Nowak, A.; Wiedensohler, A.; Herrmann, H.; David, G.; Thomas, B.; Miffre, A.; Rairoux, P.; et al. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc. Natl. Acad. Sci. USA 2012, 109, 20842–20847. [Google Scholar] [CrossRef] [Green Version]
- Sievering, H.; Cainey, J.; Harvey, M.; McGregor, J.; Nichol, S.; Quinn, P. Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res. Atmos. 2004, 109, D19317. [Google Scholar] [CrossRef]
- Laskin, A.; Iedema, M.J.; Cowin, J.P. Quantitative time-resolved monitoring of nitrate formation in sea salt particles using a CCSEM/EDX single particle analysis. Environ. Sci. Technol. 2002, 36, 4948–4955. [Google Scholar] [CrossRef]
- Riva, M.; Tomaz, S.; Cui, T.; Lin, Y.H.; Perraudin, E.; Gold, A.; Stone, E.A.; Villenave, E.; Surratt, J.D. Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol. Environ. Sci. Technol. 2015, 49, 6654–6664. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Yee, L.D.; Schilling, K.A.; Loza, C.L.; Craven, J.S.; Zuend, A.; Ziemann, P.J.; Seinfeld, J.H. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. Proc. Natl. Acad. Sci. USA 2013, 110, 11746–11750. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding of secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef] [Green Version]
- Couvidat, F.; Debry, É.; Sartelet, K.; Seigneur, C. A hydrophilic/hydrophobic organic (H2O) aerosol model: Development, evaluation and sensitivity analysis. J. Geophys. Res. Atmos. 2012, 117, 1111–1138. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, J.H.; Jeong, J.U. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an ruban site in Korea in summer. J. Environ. Monit. 2012, 14, 224–232. [Google Scholar] [CrossRef]
- Liu, P.; Song, M.; Zhao, T.; Gunthe, S.S.; Ham, S.; He, Y.; Qin, Y.M.; Gong, Z.; Amorim, J.C.; Bertram, A.K.; et al. Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. Nat. Commun. 2018, 9, 4076. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Huang, B.C.H.; Lakey, P.S.J.; Zuend, A.; Abbatt, J.P.D.; Shiraiwa, M. Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proc. Natl. Acad. Sci. USA 2019, 116, 11658–11663. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Kim, J.S.; Miller, A.L. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM. J. Nanopart. Res. 2009, 11, 175–183. [Google Scholar] [CrossRef]
- Cheng, Y.; Su, H.; Koop, T.; Mikhailov, E.; Pöschl, U. Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 2015, 6, 5923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, A.S.; Pandis, S.N. An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components. Aerosol Sci. Technol. 1999, 31, 129–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Seigneur, C.; Seinfeld, J.H.; Jacobson, M.; Clegg, S.L.; Binkowski, F.S. A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes. Atmos. Environ. 2000, 34, 117–137. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Fan, J.; Shao, L.; Hu, Y.; Wang, J.; Wang, J.; Ma, J. Classification and chemical compositions of individual particles at aneastern marginal site of Tibetan Plateau. Atmos. Pollut. Res. 2016, 7, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; et al. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmos. Environ. 2015, 115, 421–441. [Google Scholar] [CrossRef] [Green Version]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Abramson, E.; Imre, D.; Beránek, J.; Wilson, J.; Zelenyuk, A. Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys. Chem. Chem. Phys. 2013, 15, 2983–2991. [Google Scholar] [CrossRef]
- Liggio, J.; Li, S.M.; Vlasenko, A.; Stroud, C.; Makar, P. Depression of Ammonia Uptake to Sulfuric Acid Aerosols by Competing Uptake of Ambient Organic Gases. Environ. Sci. Technol. 2011, 45, 2790–2796. [Google Scholar] [CrossRef]
- Ziemann, P.J.; Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41, 6582. [Google Scholar] [CrossRef] [PubMed]
- Zaveri, R.A.; Easter, R.C.; Shilling, J.E.; Seinfeld, J.H. Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: Representing effects of volatility, phase state, and particle-phase reaction. Atmos. Chem. Phys. 2014, 14, 5153–5181. [Google Scholar] [CrossRef] [Green Version]
- Kroll, J.H.; Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593–3624. [Google Scholar] [CrossRef]
- Topping, D.O.; McFiggans, G.B.; Coe, H. A curved multi-component aerosol hygroscopicity model framework: Part 2—Including organic compounds. Atmos. Chem. Phys. 2005, 5, 1223–1242. [Google Scholar] [CrossRef] [Green Version]
- Amundson, N.R.; Caboussat, A.; He, J.W.; Martynenko, A.V.; Landry, C.; Tong, C.; Seinfeld, J.H. A new atmospheric aerosol phase equilibrium model (UHAERO): Organic systems. Atmos. Chem. Phys. 2007, 7, 4675–4698. [Google Scholar] [CrossRef] [Green Version]
- Topping, D.; Lowe, D.; McFiggans, G. Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gas/liquid equilibria in atmospheric aerosol particles—Part 2: Organic compounds. Geosci. Model Dev. 2012, 5, 1–13. [Google Scholar] [CrossRef]
- Zuend, A.; Marcolli, C.; Luo, B.P.; Peter, T. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 2008, 8, 4559–4593. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Tabazadeh, A.; Turco, R.P. Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. J. Geophys. Res. Atmos. 1996, 101, 9079–9091. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmos. Environ. 1999, 33, 3635–3649. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005. [Google Scholar]
- Gao, Y.; Chen, S.B.; Yu, L.E. Efflorescence Relative Humidity for Ammonium Sulfate Particles. J. Phys. Chem. A 2006, 110, 7602–7608. [Google Scholar] [CrossRef]
- Han, J.H.; Martin, S.T. Heterogenous nucleation of the efflorescence of (NH4)2SO4 particles internally mixed with Al2O3, TiO2, and ZrO2. J. Geophys. Res. Atmos. 1999, 104, 3543–3553. [Google Scholar] [CrossRef]
- Davis, R.D.; Lance, S.; Gordon, J.A.; Ushijima, S.B.; Tolbert, M.A. Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proc. Natl. Acad. Sci. USA 2015, 112, 15815–15820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losey, D.J.; Parker, R.G.; Freedman, M.A. pH Dependence of Liquid–Liquid Phase Separation in Organic Aerosol. J. Phys. Chem. Lett. 2016, 7, 3861–3865. [Google Scholar] [CrossRef]
- Pandit, A.V.; Ranade, V.V. Modeling Hysteresis during Crystallization and Dissolution: Application to a Paracetamol–Ethanol System. Ind. Eng. Chem. Res. 2015, 54, 10364–10382. [Google Scholar] [CrossRef]
- Pappa, G.D.; Voutsas, E.C.; Tassios, D.P. Liquid-Liquid Phase Equilibrium in Polymer-Solvent Systems: Correlation and Prediction of the Polymer Molecular Weight and the Pressure Effect. Ind. Eng. Chem. Res. 2001, 40, 4654–4663. [Google Scholar] [CrossRef]
- Shchekin, A.K.; Shabaev, I.V.; Rusanov, A.I. Thermodynamics of droplet formation around a soluble condensation nucleus in the atmosphere of a solvent vapor. J. Chem. Phys. 2008, 129, 214111. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S. Ion interaction approach: Theory and data correlation. In Activity Coefficients in Electrolyte Solutions, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991; Chapter 3; pp. 75–153. [Google Scholar]
- Clegg, S.L.; Pitzer, K.S. Thermodynamics of multicomponent, miscible, ionic solutions: Generalized equations for symmetrical electrolytes. J. Phys. Chem. 1992, 96, 3513–3520. [Google Scholar] [CrossRef]
- Clegg, S.L.; Pitzer, K.S.; Brimblecombe, P. Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes. J. Phys. Chem. 1992, 96, 9470–9479. [Google Scholar] [CrossRef]
- Bromley, L.A. Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 1973, 19, 313–320. [Google Scholar] [CrossRef]
- Kusik, C.L.; Meissner, H.P. Electrolyte activity coefficients in inorganic processing. In Fundamental Aspects of Hydrometallurgical Processes; Chapman, T.W., Tavlarides, T.L., Hubred, G.L., Willek, R.M., Eds.; AIChE Symposium Series; American Institute of Chemical Engineers: New York, NY, USA, 1978; Volume 74, pp. 14–20. [Google Scholar]
- Metzger, S.; Dentener, F.; Pandis, S.; Lelieveld, J. Gas/aerosol partitioning: 1. A computationally efficient model. J. Geophys. Res. Atmos. 2002, 107, 4312. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, R.A.; Easter, R.C.; Peters, L.K. A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA). J. Geophys. Res. Atmos. 2005, 110, D24203. [Google Scholar] [CrossRef]
- Abrams, D.S.; Prausnitz, J.M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AlChE J. 1975, 21, 116–128. [Google Scholar] [CrossRef]
- Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equlibria Using UNIFAC: A Group Contribution Method; Elsevier Scientific Publishing Co.: New York, NY, USA, 1977. [Google Scholar]
- Wittig, R.; Lohmann, J.; Gmehling, J. Vapor-Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension. Ind. Eng. Chem. Res. 2003, 42, 183–188. [Google Scholar] [CrossRef]
- Yan, W.; Topphoff, M.; Rose, C.; Gmehling, J. Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilibria 1999, 162, 97–113. [Google Scholar] [CrossRef]
- Clegg, S.L.; Kleeman, M.J.; Griffin, R.J.; Seinfeld, J.H. Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model. Part 1: Treatment of inorganic electrolytes and organic compounds in the condensed phase. Atmos. Chem. Phys. 2008, 8, 1057–1085. [Google Scholar] [CrossRef] [Green Version]
- Stokes, R.H.; Robinson, R.A. Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. J. Phys. Chem. 1966, 70, 2126–2131. [Google Scholar] [CrossRef]
- Reeser, D.I.; Jammoul, A.; Clifford, D.; Brigante, M.; D’Anna, B.; George, C.; Donaldson, D.J. Photoenhanced Reaction of Ozone with Chlorophyll at the Seawater Surface. J. Phys. Chem. C 2009, 113, 2071–2077. [Google Scholar] [CrossRef]
- Adams, P.J.; Seinfeld, J.H. Predicting global aerosol size distributions in general circulation models. J. Geophys. Res. Atmos. 2002, 107, 4370. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH–Na+–SO–NO–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.M.; Wexler, A.S. A hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res. Atmos. 2002, 107, 4577. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 1999, 33, 1553–1560. [Google Scholar] [CrossRef]
- Amundson, N.R.; Caboussat, A.; He, J.W.; Martynenko, A.V.; Savarin, V.B.; Seinfeld, J.H.; Yoo, K.Y. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO). Atmos. Chem. Phys. 2006, 6, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, R.A.; Easter, R.C. A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols. J. Geophys. Res. Atmos. 2005, 110, D02201. [Google Scholar] [CrossRef]
- Parker, V.B. Thermal properties of aqueous uni-univalent electrolytes. In National Standard Reference Data Series; US Government Printing Office: Washington, DC, USA, 1965; Volume 2, p. 66. [Google Scholar]
- Hamer, W.J.; Wu, Y.C. Osmotic coefficients for aqueous solutions: Thirty-six uni-bivalent eqlectrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1972, 1, 1047–1099. [Google Scholar] [CrossRef] [Green Version]
- Stelson, A.W.; Bassett, M.E.; Seinfeld, J.H. Thermodynamic equilibrium properties of aqueous solutions of nitrate, sulfate and ammonium. In Chemistry of Particles, Fogs and Rain; Durham, J.L., Ed.; Butterworth-Heinemann: Newton, MA, USA, 1984; pp. 1–52. [Google Scholar]
- Clegg, S.L.; Brimblecombe, P. Application of a Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0-40 mol kg−1 Aqueous Sulfuric Acid from <200 to 328 K. J. Chem. Eng. Data 1995, 40, 43–64. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Development and application of a new air pollution modeling system—II. Aerosol module structure and design. Atmos. Environ. 1997, 31, 131–144. [Google Scholar] [CrossRef]
- Jacobson, M.Z. GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res. Atmos. 2001, 106, 5385–5401. [Google Scholar] [CrossRef]
- Kim, Y.P.; Seinfeld, J.H.; Saxena, P. Atmospheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol. 1993, 19, 157–181. [Google Scholar] [CrossRef]
- Wexler, A.S.; Seinfeld, J.H. Second-generation inorganic aerosol model. Atmos. Environ. Part A Gen. Top. 1991, 25, 2731–2748. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- Metzger, S.; Steil, B.; Xu, L.; Penner, J.E.; Lelieveld, J. New representation of water activity based on a single solute specific constant to parameterize the hygroscopic growth of aerosols in atmospheric models. Atmos. Chem. Phys. 2012, 12, 5429–5446. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C. Thermodynamics of Alloys; Addison-Wesley Metallurgy Series; Addison-Wesley Press, Inc.: Cambridge, MA, USA, 1952. [Google Scholar]
- Thomsen, K.; Rasmussen, P. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems. Chem. Eng. Sci. 1999, 54, 1787–1802. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. Thermodynamic Model of the System H+–NH–Na+–SO–NO–Cl−1–H2O at 298.15 K. J. Phys. Chem. A 1998, 102, 2155–2171. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. Thermodynamic Model of the System H+–NH–SO–NO–H2O at Tropospheric Temperatures. J. Phys. Chem. A 1998, 102, 2137–2154. [Google Scholar] [CrossRef]
- Amundson, N.R.; Caboussat, A.; He, J.W.; Seinfeld, J.H.; Yoo, K.Y. An optimization problem related to the modeling of atmospheric inorganic aerosols. Comptes Rendus Mathématique Acad. Fo Sci. Paris Ser. I 2005, 340, 683–686. [Google Scholar] [CrossRef]
- Amundson, N.R.; Caboussat, A.; He, J.W.; Seinfeld, J.H.; Yoo, K.Y. Primal-dual active set algorithm for chemical equilibrium problems related to the modeling of atmospheric inorganic aerosols. J. Optim. Theory Appl. 2006, 128, 469–498. [Google Scholar] [CrossRef]
- Topping, D.; Lowe, D.; McFiggans, G. Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gas-liquid equilibria in atmospheric aerosol particles: 1. Inorganic compounds. J. Geophys. Res. Atmos. 2009, 114, D04304. [Google Scholar] [CrossRef] [Green Version]
- Topping, D.O.; McFiggans, G.B.; Coe, H. A curved multi-component aerosol hygroscopicity model framework: Part 1–Inorganic compounds. Atmos. Chem. Phys. 2005, 5, 1205–1222. [Google Scholar] [CrossRef] [Green Version]
- Clegg, S.L.; Seinfeld, J.H.; Edney, E.O. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach. J. Aerosol Sci. 2003, 34, 667–690. [Google Scholar] [CrossRef]
- Kim, Y.P.; Seinfeld, J.H.; Saxena, P. Atmospheric Gas-Aerosol Equilibrium II. Analysis of Common Approximations and Activity Coefficient Calculation Methods. Aerosol Sci. Technol. 1993, 19, 182–198. [Google Scholar] [CrossRef]
- Potukuchi, S.; Wexler, A. Identifying solid-aqueous phase transitions in atmospheric aerosols. I. Neutral-acidity solutions. Atmos. Environ. 1995, 29, 1663–1676. [Google Scholar] [CrossRef]
- Potukuchi, S.; Wexler, A.S. Identifying solid-aqueous-phase transitions in atmospheric aerosols. II. Acidic solutions. Atmos. Environ. 1995, 29, 3357–3364. [Google Scholar] [CrossRef]
- Debry, E.; Sportisse, B. Reduction of the condensation/evaporation dynamics for atmospheric aerosols: Theoretical and numerical investigation of hybrid methods. J. Aerosol Sci. 2006, 37, 950–966. [Google Scholar] [CrossRef]
- Pandis, S.N.; Wexler, A.S.; Seinfeld, J.H. Secondary organic aerosol formation and transport — II. Predicting the ambient secondary organic aerosol size distribution. Atmos. Environ. Part A Gen. Top. 1993, 27, 2403–2416. [Google Scholar] [CrossRef]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Metzger, S.; Lelieveld, J. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds. Atmos. Chem. Phys. 2007, 7, 3163–3193. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Penner, J.E.; Metzger, S.; Lelieveld, J. A comparison of water uptake by aerosols using two thermodynamic models. Atmos. Chem. Phys. Discuss. 2009, 9, 9551–9595. [Google Scholar] [CrossRef]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Andreae, M.O.; Pöschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef] [Green Version]
- Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J.E.; Fountoukis, C.; Nenes, A.; Lelieveld, J. Aerosol water parameterisation: A single parameter framework. Atmos. Chem. Phys. 2016, 16, 7213–7237. [Google Scholar] [CrossRef] [Green Version]
- Wexler, A.S.; Clegg, S.L. Atmospheric aerosol models for systems including the ions H+, NH, Na+, SO, NO3−, Cl−, Br−, and H2O. J. Geophys. Res. Atmos. 2002, 107, 4207. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitzer, K.S.; Simonson, J.M. Thermodynamics of multicomponent, miscible, ionic systems: Theory and equations. J. Phys. Chem. 1986, 90, 3005–3009. [Google Scholar] [CrossRef]
- Coffey, T.S.; Kelley, C.T.; Keyes, D.E. Pseudotransient Continuation and Differential-Algebraic Equations. SIAM J. Sci. Comput. 2003, 25, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.Y.; Martynenko, A.V.; Byun, D.; He, J. A comparison Study of CMAQ Aerosol Prediction by Two Thermodynamic Modules: UHAERO vs ISORROPIA. Available online: https://www.cmascenter.org/conference/2007/ppt/cheng_session8_2007.ppt (accessed on 4 December 2015).
- Zhang, Y.; Jacobson, M.Z. Implementation and Testing of EQUISOLV II in the CMAQ Modelling System. Available online: https://www.cmascenter.org/conference/2005/ppt/1_18.pdf (accessed on 28 November 2016).
- Makar, P.; Bouchet, V.; Nenes, A. Inorganic chemistry calculations using HETV–A vectorized solver for the SO–NO3−–NH4+ system based on the ISORROPIA algorithms. Atmos. Environ. 2003, 37, 2279–2294. [Google Scholar] [CrossRef]
- Song, S.; Gao, M.; Xu, W.; Shao, J.; Shi, G.; Wang, S.; Wang, Y.; Sun, Y.; McElroy, M.B. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 2018, 18, 7423–7438. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L., Jr.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; et al. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. Discuss. 2019. [Google Scholar] [CrossRef]
- Baustian, K.J.; Wise, M.E.; Jensen, E.J.; Schill, G.P.; Freedman, M.A.; Tolbert, M.A. State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmos. Chem. Phys. 2013, 13, 5615–5628. [Google Scholar] [CrossRef] [Green Version]
- Slade, J.H.; Knopf, D.A. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity. Geophys. Res. Lett. 2014, 41, 5297–5306. [Google Scholar] [CrossRef]
- You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hanna, S.J.; Hiranuma, N.; Kamal, S.; Smith, M.L.; Zhang, X.; Weber, R.J.; Shilling, J.E.; et al. Images reveal that atmospheric particles can undergo liquid-liquid phase separations. Proc. Natl. Acad. Sci. USA 2012, 109, 13188–13193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvidat, F.; Sartelet, K. The Secondary Organic Aerosol Processor (SOAP v1.0) model: A unified model with different ranges of complexity based on the molecular surrogate approach. Geosci. Model Dev. 2015, 8, 1111–1138. [Google Scholar] [CrossRef] [Green Version]
- Couvidat, F.; Bessagnet, B.; Garcia-Vivanco, M.; Real, E.; Menut, L.; Colette, A. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0): Seasonal and spatial evaluation over Europe. Geosci. Model Dev. 2018, 11, 165–194. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.O.T.; Murphy, B.N.; Xu, L.; Ng, N.L.; Carlton, A.G.; Guo, H.; Weber, R.; Vasilakos, P.; Appel, K.W.; Budisulistiorini, S.H.; et al. On the implications of aerosol liquid water and phase separation for organic aerosol mass. Atmos. Chem. Phys. 2017, 17, 343–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorkowski, K.; Preston, T.C.; Zuend, A. Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model. Atmos. Chem. Phys. 2019, 19, 13383–13407. [Google Scholar] [CrossRef] [Green Version]
- Griffin, R.J.; Nguyen, K.; Dabdub, D.; Seinfeld, J.H. A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation. J. Atmos. Chem. 2003, 44, 171–190. [Google Scholar] [CrossRef]
- Dawson, M.L.; Xu, J.; Griffin, R.J.; Dabdub, D. Development of aroCACM/MPMPO 1.0: A model to simulate secondary organic aerosol from aromatic precursors in regional models. Geosci. Model Dev. 2016, 9, 2143–2151. [Google Scholar] [CrossRef] [Green Version]
- Pankow, J.F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185–188. [Google Scholar] [CrossRef]
- Clegg, S.L.; Seinfeld, J.H.; Brimblecombe, P. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol Sci. 2001, 32, 713–738. [Google Scholar] [CrossRef]
- Clegg, S.L.; Seinfeld, J.H. Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 1. The Acids as Nondissociating Components. J. Phys. Chem. A 2006, 110, 5692–5717. [Google Scholar] [CrossRef] [PubMed]
- Clegg, S.L.; Seinfeld, J.H. Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 2. Systems Including Dissociation Equilibria. J. Phys. Chem. A 2006, 110, 5718–5734. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.; Jang, M.; Beardsley, R.L. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions. Atmos. Chem. Phys. 2014, 14, 4013–4027. [Google Scholar] [CrossRef] [Green Version]
- Bertram, A.K.; Martin, S.T.; Hanna, S.J.; Smith, M.L.; Bodsworth, A.; Chen, Q.; Kuwata, M.; Liu, A.; You, Y.; Zorn, S.R. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 2011, 11, 10995–11006. [Google Scholar] [CrossRef] [Green Version]
- Jenkin, M.E.; Saunders, S.M.; Wagner, V.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181–193. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Renbaum-Wolff, L.; Bertram, A.K. Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride. Atmos. Chem. Phys. 2013, 13, 11723–11734. [Google Scholar] [CrossRef] [Green Version]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J.H. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmos. Chem. Phys. 2010, 10, 7795–7820. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci. Model Dev. 2013, 6, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Pankow, J.F. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 1994, 28, 189–193. [Google Scholar] [CrossRef]
- Myrdal, P.B.; Yalkowsky, S.H. Estimating Pure Component Vapor Pressures of Complex Organic Molecules. Ind. Eng. Chem. Res. 1997, 36, 2494–2499. [Google Scholar] [CrossRef]
- Beardsley, R.L.; Jang, M. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics. Atmos. Chem. Phys. 2016, 16, 5993–6009. [Google Scholar] [CrossRef] [Green Version]
- Odum, J.R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.C.; Seinfeld, J.H. Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environ. Sci. Technol. 1996, 30, 2580–2585. [Google Scholar] [CrossRef]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Pankow, J.F.; Marks, M.C.; Barsanti, K.C.; Mahmud, A.; Asher, W.E.; Li, J.; Ying, Q.; Jathar, S.H.; Kleeman, M.J. Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water. Atmos. Environ. 2015, 122, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.G.; Bhave, P.V.; Napelenok, S.L.; Edney, E.O.; Sarwar, G.; Pinder, R.W.; Pouliot, G.A.; Houyoux, M. Model Representation of Secondary Organic Aerosol in CMAQ v4.7. Environ. Sci. Technol. 2010, 44, 8553–8560. [Google Scholar] [CrossRef]
- Carlton, A.G.; Goldstein, A.; Jimenez, J.F.; Pinder, R.W.; de Gouw, J.; Turpin, B.J.; Guenther, A.; Cohen, R.C.; Shepson, P.; Shaw, S.; et al. The Southern Oxidant and Aerosol Study (SOAS): Measuring and Modeling at the Interface of Air Quality and Climate Change to Understand Biosphere-Atmosphere Interactions. Available online: http://jasonsurratt.web.unc.edu/files/2013/05/SOAS_White_Paper_final.pdf (accessed on 6 February 2017).
- Lambe, A.T.; Onasch, T.B.; Massoli, P.; Croasdale, D.R.; Wright, J.P.; Ahern, A.T.; Williams, L.R.; Worsnop, D.R.; Brune, W.H.; Davidovits, P. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys. 2011, 11, 8913–8928. [Google Scholar] [CrossRef] [Green Version]
- Gokcen, N.A. Gibbs-Duhem-Margules laws. J. Phase Equilibria 1996, 17, 50–51. [Google Scholar] [CrossRef]
- Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirilä, P.; Leskinen, J.; Mäkelä, J.M.; Holopainen, J.K.; Pöschl, U.; Kulmala, M.; et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Pöschl, U. Gas–particle interactions of tropospheric aerosols: Kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei. Atmos. Res. 2011, 101, 562–573. [Google Scholar] [CrossRef]
- Chang, E.I.; Pankow, J.F. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model. Atmos. Environ. 2006, 40, 6422–6436. [Google Scholar] [CrossRef]
- Braban, C.F.; Abbatt, J.P.D. A study of the phase transition behavior of internally mixed ammonium sulfate - malonic acid aerosols. Atmos. Chem. Phys. 2004, 4, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, V.G.; Marcolli, C.; Krieger, U.K.; Zuend, A.; Peter, T. Efflorescence of Ammonium Sulfate and Coated Ammonium Sulfate Particles: Evidence for Surface Nucleation. J. Phys. Chem. A 2010, 114, 9486–9495. [Google Scholar] [CrossRef]
- Yu, J.Y.; Zhang, Y.; Zeng, G.; Zheng, C.M.; Liu, Y.; Zhang, Y.H. Suppression of NaNO3 Crystal Nucleation by Glycerol: Micro-Raman Observation on the Efflorescence Process of Mixed Glycerol/NaNO3/Water Droplets. J. Phys. Chem. B 2012, 116, 1642–1650. [Google Scholar] [CrossRef]
- Bodsworth, A.; Zobrist, B.; Bertram, A.K. Inhibition of efflorescence in mixed organic-inorganic particles at temperatures less than 250 K. Phys. Chem. Chem. Phys. 2010, 12, 12259–12266. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; Wilson, T.W.; Dobbie, S.; Cui, Z.; Al-Jumur, S.M.R.K.; Möhler, O.; Schnaiter, M.; Wagner, R.; Benz, S.; Niemand, M.; et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 2010, 3. [Google Scholar] [CrossRef]
- Hodas, N.; Zuend, A.; Mui, W.; Flagan, R.C.; Seinfeld, J.H. Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmos. Chem. Phys. 2015, 15, 5027–5045. [Google Scholar] [CrossRef] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere, 1st ed.; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Li, J.; Han, Z.; Zhang, R. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res. 2014, 140–141, 14–27. [Google Scholar] [CrossRef]
- Rastak, N.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Maturilli, M.; Tesche, M.; Ekman, A.M.L.; Tunved, P.; et al. Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Alesund, Svalbard. Atmos. Chem. Phys. 2014, 14, 7445–7460. [Google Scholar] [CrossRef] [Green Version]
- Rastak, N. Aerosol-Water Interaction at Sub and Super-Saturated Regimes. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2018. [Google Scholar]
- Rastak, N.; Pajunoja, A.; Acosta-Navarro, J.C.; Ma, J.; Song, M.; Partridge, D.G.; Kirkevag, A.; Leong, Y.; Hu, W.W.; Taylor, N.F.; et al. Microphysical explanation of RH-dependent water affinity of biogenic organic aerosol and its importance for climate. Geophys. Res. Lett. 2017, 44, 5167–5177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.F.; Zuend, A.; Wilson, K.R. Technical note: The role of evolving surface tension in the formation of cloud droplets. Atmos. Chem. Phys. 2019, 19, 2933–2946. [Google Scholar] [CrossRef] [Green Version]
- Chang, W. Effect of model errors in ambient air humidity on the aerosol optical depth obtain via aerosol hygroscopicity in eastern China in the Atmospheric Chemistry and Climae Model Intercomparison Project datasets. Atmos. Ocean. Sci. Lett. 2019, 12, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; O’Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; et al. The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to improvements in process representations. Atmos. Chem. Phys. 2012, 12, 8911–8949. [Google Scholar] [CrossRef] [Green Version]
- Latimer, R.N.C.; Martin, R.V. Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. Atmos. Chem. Phys. 2019, 19, 2635–2653. [Google Scholar] [CrossRef] [Green Version]
- Hodas, N.; Zuend, A.; Schilling, K.; Berkemeier, T.; Shiraiwa, M.; Flagan, R.C.; Seinfeld, J.H. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols. Atmos. Chem. Phys. 2016, 16, 12767–12792. [Google Scholar] [CrossRef] [Green Version]
- Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238–19255. [Google Scholar] [CrossRef]
- Renbaum-Wolff, L.; Song, M.; Marcolli, C.; Zhang, Y.; Liu, P.F.; Grayson, J.W.; Geiger, F.M.; Martin, S.T.; Bertram, A.K. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts. Atmos. Chem. Phys. 2016, 16, 7969–7979. [Google Scholar] [CrossRef] [Green Version]
- Wex, H.; Stratmann, F.; Topping, D.; McFiggans, G. The Kelvin versus the Raoult Term in the Köhler Equation. J. Atmos. Sci. 2008, 65, 4004–4016. [Google Scholar] [CrossRef]
- Ruehl, C.R.; Davies, J.F.; Wilson, K.R. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 2016, 351, 1447–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topping, D.; Connolly, P.; McFiggans, G. Cloud droplet number enhanced by co-condensation of organic vapours. Nat. Geosci. 2013, 6, 443–446. [Google Scholar] [CrossRef]
- Davies, J.F.; Miles, R.E.H.; Haddrell, A.E.; Reid, J.P. Influence of organic films on the evaporation and condensation of water in aerosol. Proc. Natl. Acad. Sci. USA 2013, 110, 8807–8812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwamena, N.O.A.; Buajarern, J.; Reid, J.P. Equilibrium Morphology of Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative Humidity and Surfactants. J. Phys. Chem. A 2010, 114, 5787–5795. [Google Scholar] [CrossRef]
- Sosso, G.C.; Chen, J.; Cox, S.J.; Fitzner, M.; Pedevilla, P.; Zen, A.; Michaelides, A. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chem. Rev. 2015, 116, 7078–7116. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: New York, NY, USA, 1997. [Google Scholar]
- Zaveri, R.A.; Barnard, J.C.; Easter, R.C.; Riemer, N.; West, M. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. J. Geophys. Res. Atmos. 2010, 115, D17210. [Google Scholar] [CrossRef] [Green Version]
- Riemer, N.; Vogel, H.; Vogel, B.; Fiedler, F. Modeling aerosols on the mesoscale-γ: Treatment of soot aerosol and its radiative effects. J. Geophys. Res. Atmos. 2003, 108, 4601. [Google Scholar] [CrossRef] [Green Version]
- Riemer, N.; West, M.; Zaveri, R.A.; Easter, R.C. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J. Geophys. Res. Atmos. 2009, 114, D09202. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.L.; You, Y.; Kuwata, M.; Bertram, A.K.; Martin, S.T. Phase Transitions and Phase Miscibility of Mixed Particles of Ammonium Sulfate, Toluene-Derived Secondary Organic Material, and Water. J. Phys. Chem. A 2013, 117, 8895–8906. [Google Scholar] [CrossRef]
- Takahama, S.; Pathak, R.K.; Pandis, S.N. Efflorescence Transitions of Ammonium Sulfate Particles Coated with Secondary Organic Aerosol. Environ. Sci. Technol. 2007, 41, 2289–2295. [Google Scholar] [CrossRef]
- Smith, M.L.; Kuwata, M.; Martin, S.T. Secondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate. Aerosol Sci. Technol. 2011, 45, 244–261. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.S.; Yalkowsky, S.H. Estimation of vapor pressure of some organic compounds. Ind. Eng. Chem. Res. 1991, 30, 1609–1612. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat capacity corrections to a standard state: A comparison of new and some literature methods for organic liquids and solids. Struct. Chem. 1993, 4, 271–278. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hesse, D.G.; Liebman, J.F. A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K. Struct. Chem. 1993, 4, 261–269. [Google Scholar] [CrossRef]
- Stein, S.E.; Brown, R.L. Estimation of normal boiling points from group contributions. J. Chem. Inf. Model. 1994, 34, 581–587. [Google Scholar] [CrossRef]
- Nannoolal, Y.; Rarey, J.; Ramjugernath, D.; Cordes, W. Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 2004, 226, 45–63. [Google Scholar] [CrossRef]
- Pankow, J.F.; Asher, W.E. SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 2008, 8, 2773–2796. [Google Scholar] [CrossRef] [Green Version]
- Nannoolal, Y.; Rarey, J.; Ramjugernath, D. Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 2008, 269, 117–133. [Google Scholar] [CrossRef]
- Moller, B.; Rarey, J.; Ramjugernath, D. Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions. J. Mol. Liq. 2008, 143, 52–63. [Google Scholar] [CrossRef]
- Booth, A.M.; Barley, M.H.; Topping, D.O.; McFiggans, G.; Garforth, A.; Percival, C.J. Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry. Atmos. Chem. Phys. 2010, 10, 4879–4892. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.M.; Montague, W.J.; Barley, M.H.; Topping, D.O.; McFiggans, G.; Garforth, A.; Percival, C.J. Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids. Atmos. Chem. Phys. 2011, 11, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Compernolle, S.; Ceulemans, K.; Müller, J.F. EVAPORATION: A new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions. Atmos. Chem. Phys. 2011, 11, 9431–9450. [Google Scholar] [CrossRef] [Green Version]
- Dutcher, C.S.; Wexler, A.S.; Clegg, S.L. Surface Tensions of Inorganic Multicomponent Aqueous Electrolyte Solutions and Melts. J. Phys. Chem. A 2010, 114, 12216–12230. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.O.; McFiggans, G.B.; Kiss, G.; Varga, Z.; Facchini, M.C.; Decesari, S.; Mircea, M. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: Measurements, model predictions and importance for cloud activation predictions. Atmos. Chem. Phys. 2007, 7, 2371–2398. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lu, B.C.Y. Surface tension of aqueous electrolyte solutions at high concentrations—Representation and prediction. Chem. Eng. Sci. 2001, 56, 2879–2888. [Google Scholar] [CrossRef]
- Sorjamaa, R.; Laaksonen, A. The influence of surfactant properties on critical supersaturations of cloud condensation nuclei. J. Aerosol Sci. 2006, 37, 1730–1736. [Google Scholar] [CrossRef]
- Boyer, H.C.; Bzdek, B.R.; Reid, J.P.; Dutcher, C.S. Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures. J. Phys. Chem. A 2017, 121, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Biskos, G.; Malinowksi, A.; Russell, L.M.; Buseck, P.R.; Martin, S.T. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol. 2006, 40, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Mirabel, P.; Reiss, H.; Bowles, R.K. A theory for the deliquescence of small particles. J. Chem. Phys. 2000, 113, 8200–8205. [Google Scholar] [CrossRef] [Green Version]
- Djikaev, Y.S.; Bowles, R.; Reiss, H.; Hämeri, K.; Laaksonen, A.; Väkevä, M. Theory of Size Dependent Deliquescence of Nanoparticles: Relation to Heterogeneous Nucleation and Comparison with Experiments. J. Phys. Chem. B 2001, 105, 7708–7722. [Google Scholar] [CrossRef]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons, Ltd.: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Shardt, N.; Elliott, J.A.W. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor–Liquid Phase Equilibrium. J. Phys. Chem. A 2016, 120, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1997; p. 784. [Google Scholar]
- Jacobson, M.Z. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res. Atmos. 2002, 107, 4366. [Google Scholar] [CrossRef] [Green Version]
- Russell, L.M.; Ming, Y. Deliquescence of small particles. J. Chem. Phys. 2002, 116, 311. [Google Scholar] [CrossRef] [Green Version]
- McGraw, R.; Lewis, E.R. Deliquescence and efflorescence of small particles. J. Chem. Phys. 2009, 131. [Google Scholar] [CrossRef]
- Hellmuth, O.; Shchekin, A.K. Determination of interfacial parameters of a soluble particle in a nonideal solution from measured deliquescence and efflorescence humidities. Atmos. Chem. Phys. 2015, 15, 3851–3871. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.T. Phase Transitions of Aqueous Atmospheric Particles. Chem. Rev. 2000, 100, 3403–3454. [Google Scholar] [CrossRef]
- Bruzewicz, D.A.; Checco, A.; Ocko, B.M.; Lewis, E.R.; McGraw, R.L.; Schwartz, S.E. Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy. J. Chem. Phys. 2011, 134, 044702. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Churaev, N.V.; Muller, V.M. Disjoining Pressure. In Surface Forces; Springer Science: New York, NY, USA, 1987; pp. 25–52. [Google Scholar] [CrossRef]
- Von Helmholtz, R. Untersuchungen über Dämpfe und Nebel, besonders über solche von Lösungen. In Annalen der Physik und Chemie; Gren, F.A.C., Gilbert, L.W., Poggendorff, J.C., Eds.; Verlag Von Johann Ambrosius Barth: Leipzig, Germany, 1886; Volume 27, pp. 508–543. [Google Scholar]
- Tikkanen, O.P.; Väisänen, O.; Hao, L.; Holopainen, E.; Wang, H.; Lehtinen, K.E.; Virtanen, A.; Yli-Juuti, T. Hygroscopicity of dimethylaminium-, sulfate-, and ammonium-containing nanoparticles. Aerosol Sci. Technol. 2018, 52, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Zieger, P.; Väisänen, O.; Corbin, J.C.; Partridge, D.G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U.K.; Leck, C.; et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Salter, M.E.; Hamacher-Barth, E.; Leck, C.; Werner, J.; Johnson, C.M.; Riipinen, I.; Nilsson, E.D.; Zieger, P. Calcium enrichment in sea spray aerosol particles. Geophys. Res. Lett. 2016, 43, 8277–8285. [Google Scholar] [CrossRef] [Green Version]
- Biskos, G.; Russell, L.M.; Buseck, P.R.; Martin, S.T. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. 2006, 33, L07801. [Google Scholar] [CrossRef] [Green Version]
- Bahadur, R.; Russell, L.M. Effect of Surface Tension from MD Simulations on Size-Dependent Deliquescence of NaCl Nanoparticles. Aerosol Sci. Technol. 2008, 42, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. The Effect of Droplet Size on Surface Tension. J. Chem. Phys. 1949, 17, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Veghte, D.P.; Altaf, M.B.; Freedman, M.A. Size Dependence of the Structure of Organic Aerosol. J. Am. Chem. Soc. 2013, 135, 16046–16049. [Google Scholar] [CrossRef]
- Altaf, M.B.; Zuend, A.; Freedman, M.A. Role of nucleation mechanism on the size dependent morphology of organic aerosol. Chem. Commun. 2016, 52, 9220–9223. [Google Scholar] [CrossRef] [Green Version]
- Altaf, M.B.; Freedman, M.A. Effect of drying rate on aerosol particle morphology. J. Phys. Chem. Lett. 2017, 8, 3613–3618. [Google Scholar] [CrossRef]
- Sareen, N.; Carlton, A.G.; Surratt, J.D.; Gold, A.; Lee, B.; Lopez-Hilfiker, F.D.; Mohr, C.; Thornton, J.A.; Zhang, Z.; Liam, Y.B.; et al. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign. Atmos. Chem. Phys. 2016, 16, 14409–14420. [Google Scholar] [CrossRef] [Green Version]
- Werner, J.; Dalirian, M.; Walz, M.M.; Ekholm, V.; Wideqvist, U.; Lowe, S.J.; Öhrwall, G.; Persson, I.; Riipinen, I.; Björneholm, O. Surface Partitioning in Organic–Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles. Environ. Sci. Technol. 2016, 50, 7434–7442. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.; Harrison, R.M.; Erisman, J.W. Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols. Atmos. Environ. (1967) 1989, 23, 1591–1599. [Google Scholar] [CrossRef]
- Wexler, A.S.; Seinfeld, J.H. The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos. Environ. Part A Gen. Top. 1990, 24, 1231–1246. [Google Scholar] [CrossRef]
- Wexler, A.S.; Seinfeld, J.H. Analysis of aerosol ammonium nitrate: Departures from equilibrium during SCAQS. Atmos. Environ. Part A Gen. Top. 1992, 26, 579–591. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Seinfeld, J.H. Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 2012, 39, L24801. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Upshur, M.A.; Robinson, E.S.; Geiger, F.M.; Sullivan, R.C.; Thomson, R.J.; Donahue, N.M. Following particle-particle mixing in atmospheric secondary organic aerosols by using isotopically labeled terpenes. Chem 2018, 4, 318–333. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, N.A.; Sutugin, A.G. Highly Dispersed Aerosols. In Topics in Current Aerosol Research; Hidy, G.M., Brock, J.R., Eds.; Pergamon Press Inc.: New York, NY, USA, 1971; pp. 1–60. [Google Scholar]
- Roldin, P.; Eriksson, A.C.; Nordin, E.Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; et al. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM. Atmos. Chem. Phys. 2014, 14, 7953–7993. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Wexler, A.S. Modeling urban and regional aerosols – condensation and evaporation near acid neutrality. Atmos. Environ. 1998, 32, 3527–3531. [Google Scholar] [CrossRef]
- Capaldo, K.P.; Pilinis, C.; Pandis, S.N. A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmos. Environ. 2000, 34, 3617–3627. [Google Scholar] [CrossRef]
- Meng, Z.; Seinfeld, J.H. Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species. Atmos. Environ. 1996, 30, 2889–2900. [Google Scholar] [CrossRef]
- Jacobson, M.Z. A Solution to the Problem of Nonequilibrium Acid/Base Gas-Particle Transfer at Long Time Step. Aerosol Sci. Technol. 2005, 39, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Pilinis, C.; Capaldo, K.P.; Nenes, A.; Pandis, S.N. MADM-A New Multicomponent Aerosol Dynamics Model. Aerosol Sci. Technol. 2000, 32, 482–502. [Google Scholar] [CrossRef]
- Hu, X.M.; Zhang, Y.; Jacobson, M.Z.; Chan, C.K. Coupling and evaluating gas/particle mass transfer treatments for aerosol simulation and forecast. J. Geophys. Res. Atmos. 2008, 113, D11208. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Numerical Techniques to Solve Condensational and Dissolutional Growth Equations When Growth is Coupled to Reversible Reactions. Aerosol Sci. Technol. 1997, 27, 491–498. [Google Scholar] [CrossRef]
- Benduhn, F.; Mann, G.W.; Pringle, K.J.; Topping, D.O.; McFiggans, G.; Carslaw, K.S. Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: Description, evaluation and first global modelling results. Geosci. Model Dev. 2016, 9, 3875–3906. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.W.; Carslaw, K.S.; Spracklen, D.V.; Ridley, D.A.; Manktelow, P.T.; Chipperfield, M.P.; Pickering, S.J.; Johnson, C.E. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 2010, 3, 519–551. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Cheng, Z.; Li, H.; Qian, X.; Qin, X.; Shi, W. Gas-particle partition of carbonyl compounds in the ambient atmosphere. Environ. Sci. Technol. 2018, 52, 10977–11006. [Google Scholar] [CrossRef]
- Pöschl, U.; Rudich, Y.; Ammann, M. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology. Atmos. Chem. Phys. 2007, 7, 5989–6023. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Pfrang, C.; Pöschl, U. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): The influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmos. Chem. Phys. 2010, 10, 3673–3691. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Pfrang, C.; Koop, T.; Pöschl, U. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): Linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys. 2012, 12, 2777–2794. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, R.A.; Shilling, J.E.; Zelenyuk, A.; Liu, J.; Bell, D.M.; D’Ambro, E.L.; Gaston, C.J.; Thornton, J.A.; Laskin, A.; Lin, P.; et al. Growth kinetics and size distribution dynamics of viscous secondary organic aerosol. Environ. Sci. Technol. 2018, 52, 1191–1199. [Google Scholar] [CrossRef]
- Reid, J.P.; Bertram, A.K.; Topping, D.O.; Laskin, A.; Martin, S.T.; Petters, M.D.; Pope, F.D.; Rovelli, G. The viscosity of atmospherically relevant organic particles. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- O’Meara, S.; Topping, D.O.; McFiggans, G. The rate of equilibration of viscous aerosol particles. Atmos. Chem. Phys. 2016, 16, 5299–5313. [Google Scholar] [CrossRef]
- Zobrist, B.; Soonsin, V.; Luo, B.P.; Krieger, U.K.; Marcolli, C.; Petter, T.; Koop, T. Ultra-slow water diffusion in aqueous sucrose glasses. Phys. Chem. Chem. Phys. 2011, 13, 3514–3526. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Woods, E.; Baer, T.; Miller, R.E. Aerosol uptake described by numerical solution of the diffusion-reaction equations in the particle. J. Phys. Chem. A 2003, 107, 9582–9587. [Google Scholar] [CrossRef]
- O’Meara, S.; Topping, D.O.; Zaveri, R.A.; McFiggans, G. An efficient approach for treating composition-dependent diffusion within organic particles. Atmos. Chem. Phys. 2017, 17, 10477–10494. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK; Ely House: London, UK, 1975. [Google Scholar]
- Evoy, E.; Maclean, A.M.; Rovelli, G.; Li, Y.; Tsimpidi, A.P.; Karydis, V.A.; Kamal, S.; Lelieveld, J.; Shiraiwa, M.; Reid, J.P.; et al. Predictions of diffusion rates of organic molecules in secondary organic aerosols using the Stokes-Einstein and fractional Stokes-Einstein relations. Atmos. Chem. Phys. 2019, 19, 10073–10085. [Google Scholar] [CrossRef] [Green Version]
- Price, H.C.; Mattsson, J.; Murray, B.J. Sucrose diffusion in aqueous solution. Phys. Chem. Chem. Phys. 2016, 18, 19207–19216. [Google Scholar] [CrossRef] [Green Version]
- Hodgdon, J.A.; Stillinger, F.H. Stokes-Einstein violation in glass-forming liquids. Phys. Rev. E 1993, 48, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Wu, Z.W.; Wang, W.H.; Li, M.Z.; Xu, L. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, P.; Kolb, C.E.; Williams, L.R.; Jayne, J.T.; Worsnop, D.R. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem. Rev. 2006, 106, 1323–1354. [Google Scholar] [CrossRef]
- Hanson, D.R. Mass accommodation of H2SO4 and CH3SO3H on water-sulfuric acid solutions from 6% tp 97% RH. J. Phys. Chem. A 2005, 109, 6919–6927. [Google Scholar] [CrossRef]
- Julin, J.; Winkler, P.M.; Donahue, N.M.; Wagner, P.E.; Riipinen, I. Near-unity mass accommodation coefficient of organic molecules of varying structure. Environ. Sci. Technol. 2014, 48, 12083–12089. [Google Scholar] [CrossRef] [Green Version]
- Krechmer, J.E.; Day, D.A.; Ziemann, P.J.; Jimenez, J.L. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers. Environ. Sci. Technol. 2017, 51, 11867–11875. [Google Scholar] [CrossRef]
- Worsnop, D.R.; Zahniser, M.S.; Kolb, C.E.; Gardner, J.A.; Watson, L.R.; Doren, J.M.V.; Jayne, J.T.; Davidovits, P. Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces. J. Phys. Chem. 1989, 93, 1159–1172. [Google Scholar] [CrossRef]
- De Bruyn, W.J.; Shorter, J.A.; Davidovits, P.; Worsnop, D.R.; Zahniser, M.S.; Kolb, C.E. Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys. Res. Atmos. 1994, 99, 16927–16932. [Google Scholar] [CrossRef]
- Leyssens, G.; Louis, F.; Sawerysyn, J.P. Temperature dependence of the mass accommodation coefficients of 2-nitrophenol, 2-methylphenol, 3-methylphenol, and 4-methylphenol on aqueous surfaces. J. Phys. Chem. 2005, 109, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- Barclay, P.L.; Lukes, J.R. Curvature dependence of hte mass accommodation coefficient. Langmuir 2019, 35, 6196–6202. [Google Scholar] [CrossRef]
- Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; et al. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign. Atmos. Chem. Phys. 2015, 15, 12283–12313. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.E.; Spracklen, D.V.; Pierce, J.R.; Riipinen, I.; D’Andrea, S.D.; Rap, A.; Carslaw, K.S.; Forster, P.M.; Artaxo, P.; Kulmala, M.; et al. Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2015, 15, 12989–13001. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 2006, 132, 1179–1203. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shiraiwa, M. Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmos. Chem. Phys. 2019, 19, 5959–5971. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Shiraiwa, M.; McWhinney, R.D.; Pöschl, U.; Abbatt, J.P.D. Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss. 2013, 165, 391–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Li, Y.J.; Wang, Y.; Gilles, M.K.; Zaveri, R.A.; Bertram, A.K.; Martin, S.T. Lability of secondary organic particulate matter. Proc. Natl. Acad. Sci. USA 2016, 113, 12643–12648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.L.; Bertram, A.K.; Martin, S.T. Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material. Atmos. Chem. Phys. 2012, 12, 9613–9628. [Google Scholar] [CrossRef] [Green Version]
- Saukko, E.; Zorn, S.; Kuwata, M.; Keskinen, J.; Virtanen, A. Phase state and deliquescence hysteresis of ammonium-sulfate-seeded secondary organic aerosol. Aerosol Sci. Technol. 2015, 49, 531–537. [Google Scholar] [CrossRef]
- Herrmann, H.; Schaefer, T.; Tilgner, A.; Styler, S.A.; Weller, C.; Teich, M.; Otto, T. Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase. Chem. Rev. 2015, 115, 4259–4334. [Google Scholar] [CrossRef]
- Ervens, B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem. Rev. 2015, 115, 4157–4198. [Google Scholar] [CrossRef]
- Kolesar, K.R.; Li, Z.; Wilson, K.R.; Cappa, C.D. Heating-induced evaporation of nine different secondary aerosol types. Environ. Sci. Technol. 2015, 49, 12242–12252. [Google Scholar] [CrossRef]
- Rojas, L.; Peraza, A.; Ruette, F. Aging Oxidation Reactions on Atmospheric Black Carbon by OH Radicals. A Theoretical Modeling Study. J. Phys. Chem. A 2015, 119, 13038–13047. [Google Scholar] [CrossRef]
- Zhang, Y.; Favez, O.; Canonaco, F.; Liu, D.; Mocnik, G.; Amodeo, T.; Sciare, J.; Prévôt, A.S.H.; Gros, V.; Albinet, A. Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. Npj Clim. Atmos. Sci. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.E.; Lin, Y.; Guo, S.; Zhang, R. Heterogeneous Chemistry of Glyoxal on Acidic Solutions. An Oligomerization Pathway for Secondary Organic Aerosol Formation. J. Phys. Chem. A 2015, 119, 4457–4463. [Google Scholar] [CrossRef]
- Wang, L.; Khalizov, A.F.; Zheng, J.; Xu, W.; Ma, Y.; Lal, V.; Zhang, R. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 2010, 3, 238–242. [Google Scholar] [CrossRef]
- Hiemenz, P.C. The role of van der Waals forces in surface and colloid chemistry. J. Chem. Educ. 1972, 49, 164–170. [Google Scholar] [CrossRef]
- Goss, K.U. The air/surface adsroption equilibrium of organic compounds under ambient conditions. Crit. Rev. Environ. Sci. Technol. 2004, 34, 339–389. [Google Scholar] [CrossRef]
- Bedolla, P.O.; Feldbauer, G.; Wolloch, M.; Eder, S.J.; Dörr, N.; Mohn, P.; Redinger, J.; Vernes, A. Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces. J. Phys. Chem. C 2014, 118, 17608–17615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valsaraj, K.T. A Review of the Aqueous Aerosol Surface Chemistry in the Atmospheric Context. Open J. Phys. Chem. 2012, 02, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Baxter, R.J.; Hu, P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 2002, 116, 4379–4381. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Sosedova, Y.; Ronviere, A.; Yang, H.; Zhang, Y.; Abbatt, J.P.D.; Ammann, M.; Pöschl, U. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nat. Chem. 2011, 3, 291–295. [Google Scholar] [CrossRef]
- Tang, M.; Huang, X.; Lu, K.; Ge, M.; Li, Y.; Cheng, P.; Zhu, T.; Ding, A.; Zhang, Y.; Gligorovski, S.; et al. Heterogeneous reactions of minderal dust aerosol: Implications for tropospheric oxidation capacity. Atmos. Chem. Phys. 2017, 17, 11727–11777. [Google Scholar] [CrossRef] [Green Version]
- Prins, R. Eley-Rideal, the other mechanism. Top. Catal. 2018, 61, 714–721. [Google Scholar] [CrossRef]
- Yuan, R.; Napoli, J.A.; Marsalek, O.; Markland, T.E.; Fayer, M.D. Tracking aqueous proton transfer by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations. ACS Cent. Sci. 2019, 5, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Temelso, B.; Phan, T.N.; Shields, G.C. Computational study of the hydration of sulfuric acid dimers: Implications for acid dissociation and aerosol formation. J. Phys. Chem. A 2012, 116, 9745–9758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loukonen, V.; Bork, N.; Vehkamäki, H. From collisions to clusters: First step sulphuric acid nanocluster formation dynamics. Mol. Phys. 2014, 112, 1979–1986. [Google Scholar] [CrossRef]
- Tsona, N.T.; Henschel, H.; Bork, N.; Loukonen, V.; Vehkamäki, H. Structures, hydration, and electrical mobilities of bisulfate ion-sulfuric acid-ammonia/dimethylamine clusters: A computational study. J. Phys. Chem. A 2015, 119, 9670–9679. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Santiburcio, D.; Camellone, M.F.; Marx, D. Solvation-induced changes in the mechanism of alcohol oxidation at gold/titania nanocatalysts in the aqueous phase versus gas phase. Angwandte Chem. Int. Ed. 2018, 57, 3327–3331. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A.P.; DeCarlo, P.F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation. Atmos. Chem. Phys. 2012, 12, 5879–5895. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Carlton, A.G.; Fan, S.; Horowitz, L.W.; Levy II, H.; Tao, S. Evaluation of factors controlling global secondary organic aerosol production from cloud processes. Atmos. Chem. Phys. 2013, 13, 1913–1926. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Han, T.; Du, W.; Wang, Q.; Chen, C.; Zhao, J.; Zhang, Y.; Li, J.; Fu, P.; Wang, Z.; et al. Effects of aqueous-phase and photochemical processing on secondary organic aerosol formation and evolution in Beijing, China. Environ. Sci. Technol. 2017, 51, 762–770. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Kanakidou, M. Global modelling of secondary organic aerosol in the tropopshere: A sensitivity analysis. Atmos. Chem. Phys. 2003, 3, 1849–1869. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wu, S.; Dubey, M.K.; French, N.H.F. Impact of aging mechanism on model simulated carbonaceous aerosols. Atmos. Chem. Phys. 2013, 13, 6329–6343. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Li, Q.; Liou, K.N.; Qi, L.; Tao, S.; Schwarz, J.P. Microphysics based black carbon aging in a global CTM: Constraints from HIPPO observations and implications for global black carbon budget. Atmos. Chem. Phys. 2016, 16, 3077–3098. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.C.; Riemer, N.; Knopf, D.A. Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model. Atmos. Chem. Phys. 2011, 11, 4505–4520. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.L.; Bhave, P.V.; Brown, S.S.; Riemer, N.; Stutz, J.; Dabdub, D. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review. Aerosol Sci. Technol. 2011, 45, 665–695. [Google Scholar] [CrossRef]
- Riemer, N.; Vogel, H.; Vogel, B.; Schell, B.; Ackermann, I.; Kessler, C.; Hass, H. Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions. J. Geophys. Res. Atmos. 2003, 108, 4144. [Google Scholar] [CrossRef] [Green Version]
- Paulot, F.; Ginoux, P.; Cooke, W.F.; Donner, L.J.; Fan, S.; Lin, M.Y.; Mao, J.; Naik, V.; Horowitz, L.W. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: Implications for present and future nitrate optical depth. Atmos. Chem. Phys. 2016, 16, 1459–1477. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.T.; Parworth, C.L.; Zhang, Q.; Miller, D.J.; Sun, K.; Zondlo, M.A.; Baker, K.R.; Wisthaler, A.; Nowak, J.B.; Pusede, S.E.; et al. Modeling NH4NO3 over the San Joaquin Valley during the 2013 DISCOVER-AQ campaign. J. Geophys. Res. Atmos. 2018, 123, 4727–4745. [Google Scholar] [CrossRef]
- Morgan, W.T.; Ouyang, B.; Allan, J.D.; Aruffo, E.; DiCarlo, P.; Kennedy, O.J.; Lowe, D.; Flynn, M.J.; Rosenberg, P.D.; Williams, P.I.; et al. Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in northwestern Europe. Atmos. Chem. Phys. 2015, 15, 973–990. [Google Scholar] [CrossRef] [Green Version]
- Dentener, F.J.; Carmichael, G.R.; Zhang, Y.; Lelieveld, J.; Crutzen, P.J. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. Atmos. 1996, 101, 22869–22889. [Google Scholar] [CrossRef]
- Alexander, B.; Park, R.J.; Jacob, D.J.; Li, Q.B.; Yantosca, R.M.; Savarino, J.; Lee, C.C.W.; Thiemens, M.H. Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res. Atmos. 2005, 110, D10307. [Google Scholar] [CrossRef]
- Manktelow, P.T.; Carslaw, K.S.; Mann, G.W.; Spracklen, D.V. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmos. Chem. Phys. 2010, 10, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.; Park, R.J.; Jacob, D.J.; Gong, S. Transition metal—Catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget. J. Geophys. Res. Atmos. 2009, 114, D02309. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Zhang, Q.; Zhang, Y.; He, K.B.; Wang, K.; Zheng, G.J.; Duan, F.K.; Ma, Y.L.; Kimoto, T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 2015, 15, 2031–2049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xing, J.; Sarwar, G.; Ge, Y.; He, H.; Duan, F.; Zhao, Y.; He, K.; Zhu, L.; Chu, B. Parameterization of heterogeneous reaction of SO2 to sulfate on dust with coexistence of NH3 and NO2 under different humidity conditions. Atmos. Environ. 2019, 208, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Chen, Q.; Wang, Y.; Lu, X.; He, P.; Sun, Y.; Shah, V.; Martin, R.V.; Philip, S.; Song, S.; et al. Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations and sulfate oxygen isotopes in Beijing. Atmos. Chem. Phys. 2019, 19, 6107–6123. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, E.H.; Tilgner, A.; Schröder, R.; Bräuer, P.; Wolke, R.; Herrmann, H. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. Proc. Natl. Acad. Sci. USA 2016, 113, 11776–11781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, R.; Keene, W.C.; Pszenny, A.A.P.; Arimoto, R.; Ayers, G.P.; Baboukas, E.; Cainey, J.M.; Crutzen, P.J.; Duce, R.A.; Honninger, G.; et al. Inorganic bromine in the marine boundary layer: A critical review. Atmos. Chem. Phys. 2003, 3, 1301–1336. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Cox, R.A.; Warwick, N.J.; Pyle, J.A.; Carver, G.D.; O’Connor, F.M.; Savage, N.H. Tropospheric bromine chemistry and its impacts on ozone: A model study. J. Geophys. Res. Atmos. 2005, 110, D23311. [Google Scholar] [CrossRef]
- Zhu, L.; Jacob, D.J.; Eastham, S.D.; Sulprizio, M.P.; Wang, X.; Sherwen, T.; Evans, M.J.; Chen, Q.; Alexander, B.; Koenig, T.K.; et al. Effect of sea salt aerosol on tropospheric bromine chemistry. Atmos. Chem. Phys. 2019, 19, 6497–6507. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Schmidt, J.A.; Shah, V.; Jaeglé, L.; Alexander, B. Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets. Geophys. Res. Lett. 2017, 44, 7069–7078. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.; Knipping, E.; Yarwood, G. 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 2014, 95, 158–164. [Google Scholar] [CrossRef]
- Shrivastava, M.; Easter, R.C.; Liu, X.; Zelenyuk, A.; Singh, B.; Zhang, K.; Ma, P.L.; Chand, D.; Ghan, S.; Jimenez, J.L.; et al. Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions. J. Geophys. Res. Atmos. 2015, 120, 4169–4195. [Google Scholar] [CrossRef]
- Zhang, X.; McVay, R.C.; Huang, D.D.; Dalleska, N.F.; Aumont, B.; Flagan, R.C.; Seinfeld, J.H. Formation and evolution of molecular products in α-pinene secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2015, 112, 14168–14173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokinen, T.; Berndt, T.; Makkonen, R.; Kerminen, V.M.; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, A.B.; Worsnop, D.R.; et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proc. Natl. Acad. Sci. USA 2015, 112, 7123–7128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.N.; Donahue, N.M.; Fountoukis, C.; Pandis, S.N. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmos. Chem. Phys. 2011, 11, 7859–7873. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wang, S.; Donahue, N.M.; Jathar, S.H.; Huang, X.; Wu, W.; Hao, J.; Robinson, A.L. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Sci. Rep. 2016, 6, 28815. [Google Scholar] [CrossRef] [Green Version]
- Stadtler, S.; Kühn, T.; Schröder, S.; Taraborrelli, D.; Schultz, M.; Kokkola, H. Isoprene-derived secondary organic aerosol in the global aerosol-chemistry-climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geosci. Model Dev. 2018, 11, 3235–3260. [Google Scholar] [CrossRef] [Green Version]
- Krapf, M.; Haddad, I.E.; Burns, E.A.; Molteni, U.; Daellenbach, K.R.; Prévôt, A.S.H.; Baltensperger, U.; Dommen, J. Labile peroxides in secondary organic aerosol. Chem 2016, 1, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Berkemeier, T.; Schilling-Fahnestock, K.A.; Seinfeld, J.H.; Pöschl, U. Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmos. Chem. Phys. 2014, 14, 8323–8341. [Google Scholar] [CrossRef] [Green Version]
- Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S.B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H.L.; et al. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles. Atmos. Chem. Phys. 2016, 16, 1747–1760. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Montalvo, D.L.; Häkkinen, S.A.K.; Schwier, A.N.; Lim, Y.B.; McNeill, V.F.; Turpin, B.J. Ammonium Addition (and Aerosol pH) Has a Dramatic Impact on the Volatility and Yield of Glyoxal Secondary Organic Aerosol. Environ. Sci. Technol. 2014, 48, 255–262. [Google Scholar] [CrossRef]
- De Haan, D.O.; Corrigan, A.L.; Tolbert, M.A.; Jimenez, J.L.; Wood, S.E.; Turley, J.J. Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating Droplets. Environ. Sci. Technol. 2009, 43, 8184–8190. [Google Scholar] [CrossRef]
- Drozd, G.; Woo, J.; Häkkinen, S.A.K.; Nenes, A.; McNeill, V.F. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility. Atmos. Chem. Phys. 2014, 14, 5205–5215. [Google Scholar] [CrossRef]
- Lee, A.K.Y.; Zhao, R.; Gao, S.S.; Abbatt, J.P.D. Aqueous-Phase OH Oxidation of Glyoxal: Application of a Novel Analytical Approach Employing Aerosol Mass Spectrometry and Complementary Off-Line Techniques. J. Phys. Chem. A 2011, 115, 10517–10526. [Google Scholar] [CrossRef]
- Gaston, C.J.; Riedel, T.P.; Zhang, Z.; Gold, A.; Surratt, J.D.; Thornton, J.A. Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environ. Sci. Technol. 2014, 48, 11178–11186. [Google Scholar] [CrossRef]
- McNeill, V.F.; Sareen, N.; Schwier, A.N. Surface-Active Organics in Atmospheric Aerosols. In Topics in Current Chemistry; Springer Nature: Basel, Switzerland, 2013; pp. 201–259. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Pinder, R.W.; Piletic, I.R.; Xie, Y.; Capps, S.L.; Lin, Y.H.; Surratt, J.D.; Zhang, Z.; Gold, A.; Luecken, D.J.; et al. Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation. Environ. Sci. Technol. 2013, 47, 11056–11064. [Google Scholar] [CrossRef]
- Karambelas, A.; Pye, H.O.T.; Budisulistiorini, S.H.; Surratt, J.D.; Pinder, R.W. Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements. Environ. Sci. Technol. Lett. 2014, 1, 278–283. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Chen1, T.; Liu, J.; He, H. Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals. Atmos. Chem. Phys. 2019, 19, 2001–2013. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.O.T.; Zuend, A.; Fry, J.L.; Isaacman-VanWertz, G.; Capps, S.L.; Appel, K.W.; Foroutan, H.; Xu, L.; Ng, N.L.; Goldstein, A.H. Coupling of organic and inorganic aerosol systems and the effect of gas-particle partitioning in the southeastern US. Atmos. Chem. Phys. 2018, 18, 357–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvern, R.F.; Jacob, D.J.; Kim, P.S.; Marais, E.A.; Turner, J.R.; Campuzano-Jost, P.; Jimenez, J.L. Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: A possible frole of organic aerosol. Atmos. Chem. Phys. 2017, 17, 5107–5118. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Li, J.; Kota, S.H. Significant contributions of isoprene to summertime secondary organic aerosol in eastern United States. Environ. Sci. Technol. 2015, 49, 7834–7842. [Google Scholar] [CrossRef]
- Jo, D.S.; Hodzic, A.; Emmons, L.K.; Marais, E.A.; Peng, Z.; Nault, B.A.; Hu, W.; Campuzano-Jost, P.; Jimenez, J.L. A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: A case study with GEOS-Chem v11-02-rc. Geosci. Model Dev. 2019, 12, 2983–3000. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Wiedensohler, A.; Fast, J.D.; Zaveri, R.A. Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing. J. Geophys. Res. Atmos. 2011, 116, D19208. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Wang, K.; Zhang, Y.; Wang, L.; Zhang, Q.; Duan, F.; He, K.; Yu, S.C. Incorporation of new particle formation and early growth treatments into WRF-Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia. Atmos. Environ. 2016, 124, 262–284. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Griffin, R.J. Theoretical Modeling of the Size-Dependent Influence of Surface Tension on the Absorptive Partitioning of Semi-Volatile Organic Compounds. J. Atmos. Chem. 2005, 50, 139–158. [Google Scholar] [CrossRef]
- Patoulias, D.; Fountoukis, C.; Riipinen, I.; Pandis, S.N. The role of organic condensation on ultrafine particle growth during nucleation events. Atmos. Chem. Phys. 2015, 15, 6337–6350. [Google Scholar] [CrossRef] [Green Version]
- Zawadowicz, M.A.; Proud, S.R.; Seppalainen, S.S.; Cziczo, D.J. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions. Atmos. Chem. Phys. 2015, 15, 8975–8986. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Beltrán, N.D.; Vallés, H.R.; Estévez, L.A.; Duarte, H. A neural network approach to predict activity coefficients. Can. J. Chemcal Eng. 2009, 87, 748–760. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, D.; Wang, C. Metamodeling of Droplet Activation for Global Climate Models. J. Atmos. Sci. 2016, 73, 1255–1272. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, C.D.; Garimella, S.; Zawadowicz, M.A.; Möhler, O.; Cziczo, D.J. A machine learning approach to aerosol classification for single-particle mass spectromety. Atmos. Meas. Tech. 2018, 11, 5687–5699. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.; Kodros, J.K.; Pierce, J.R.; West, M.; Riemer, N. Machine learning to predict the global distribution of aerosol mixing state metrics. Atmosphere 2018, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.P.; Matveev, S.A.; Zheltkov, D.A.; Tyrtyshnikov, E.E. Fast and accurate finite-difference method solving multicomponent Smoluchowski coagulation equation with source and sink terms. Procedia Comput. Sci. 2016, 80, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Luo, G. Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys. 2009, 9, 7691–7710. [Google Scholar] [CrossRef] [Green Version]
Thermodynamics Model | Acitivity Coefficient Scheme | Condensed Phase Equilibrium Solver | Gas-Aerosol Partitioning Scheme | Host Model Availability |
---|---|---|---|---|
EQUISOLV II [90,91] | Mean mixed activity coefficients based on empirical mixing rules of Bromley [104]. Necessary mean binary activity coefficients from various sources Parker [122], Hamer and Wu [123]. Temperature dependent sulfate and bisulfate activity coefficients obtained using the method of Stelson et al. [124] to the mixed coefficients from Clegg and Brimblecombe [125]. Zdanovskii-Stokes-Robinson (ZSR) used for liquid water content. | Analytical equilibrium iteration. Modification of the mass flux iteration scheme where individual equilibrium reactions are solved or approximated analytically. Approximate treatment of deliquescence relative humidity of mixtures (MDRH). NH-Na-Ca-Mg-K-NO-SO-Cl-CO | Kinetic approach with solution of mass transfer equations. Kelvin effect is included. Noniterative, unconditionally stable solution schemes for both dissolutional and condensational growth [126]. | GATOR-GCMM [127] |
[email protected] | ||||
ISORROPIA II [116,117] | Mean mixed activity coefficients based on Bromley [104]. Binary activity coefficients obtained using Kusik and Meissner [105] following evaluation of Kim et al. [128]. ZSR for liquid water content. | The full multicomponent system is approximated by several subdomains identified on the basis of composition. Only a subset of component mixtures and reactions is solved. Analytical solutions are used where possible and iteration with the bisection method is used for the rest. MDRH obtained via fast custom scheme. MDRH temperature dependence determined by a formula similar to Wexler and Seinfeld [129] for deliquescence relative humidity (DRH). NH-Na-Ca-Mg-K-NO-SO-Cl | Components are assumed to be under instantaneous equilibrium based on the observation that transient partitioning effects occur mostly for coarser aerosol sizes. No Kelvin effect included. | WRF-Chem [130], GEOS-Chem [131] |
https://www.epfl.ch/labs/lapi/isorropia/ | ||||
EQSAM [132] | Uses an empirical binary-type relation which takes into account the Kelvin effect. | Structured similar to ISORROPIA. Simplification into composition subdomains and approximate MDRH approach. NH-Na-Ca-Mg-K-NO-SO-Cl | Instantaneous equilibrium without Kelvin effect. | Can be used online. |
[email protected] | ||||
MOSAIC [76] | Mixing rules based on the Pitzer, Simonson and Clegg (PSC) model optimized using the Taylor’s series approach of Wagner [133]. Superior to other models since there is no limitation on saturation and valid over the full RH range. ZSR for liquid water content using PSC parameters. | Uses pseudo-transient continuation (PTC) methods to solve the nonlinear algebraic reaction equations of the full multicomponent system. General solver that can model equilibrium salt formation characteristics which enables an accurate parameterization of MDRH. NH-Na-Ca-NO-SO-HSO-Cl | Kinetic mass transfer approach using the adaptive step time-split Euler method. Includes the Kelvin effect. | WRF-Chem |
[email protected] | ||||
UHAERO [120] | Mixing rules based on choice of PSC or the extended UNIQUAC model [134]. Water content is based on Clegg et al. [135,136]. | Solves full multicomponent system via Gibbs free energy minimization using a primal-dual active-set algorithm for speed [137,138]. NH-Na-NO-SO-Cl | Instantaneous equilibrium without Kelvin effect. | CMAQ (experimental) |
Co-authors | ||||
PD-FiTE [139] | Activity coefficients taken from ADDEM [86,140] and represented by a partial derivative fitted Taylor expansion. A more general approach than MOSAIC since the fitting is done to the whole composition space. Binary activity coefficients determined using PSC. | Not included. NH-Na-NO-SO-HSO-Cl | Not included. | Experimental |
[email protected] |
Thermodynamics Model | Acitivity Coefficient Scheme | Condensed Phase Evolution | Gas-Aerosol Partitioning Scheme | Host Model Availability |
---|---|---|---|---|
MPMPO [169,170] | Uses the UNIFAC [109] model for activity coefficients. MPMPO is for SOA in used in conjunction with an inorganic thermodynamics scheme (e.g., SCAPE2). | Aerosol particles are assumed to be of two types: single phase (mixed inorganic and organic) or separated into an aqueous phase and an organic phase. | Pankow [171] equilibrium absorption model is used for partitioning into the organic phase. Activity-corrected effective Henry’s law scheme is used for partitioning into the aqueous phase. An iterative solution approach is used for both phases since activity coefficients are functions of composition and to conserve mass. | UCI-CIT [170] |
[email protected] | ||||
UHAERO -organics [87] | Hybrid scheme based on the Clegg-Seinfeld-Brimblecombe (CSB) model [172,173,174] where the Pitzer-Simonson-Clegg (PSC) method is used for inorganics and UNIFAC for organics. The Clegg et al. [135,136] solvent activity model is used to determine water content instead of Zdanovskii-Stokes-Robinson (ZSR). | Includes organic compounds which are not water soluble and multiple liquid phases are allowed to form. Uses an efficient Gibbs free energy minimization approach with a hybrid solver based on the primal-dual active-set algorithm for the gas-aerosol equilibrium and the primal-dual interior-point algorithm for the liquid phase equilibrium. | Equilibrium | Offline |
Co-authors | ||||
PD-FiTE-organics [88] | Follows the Taylor expansion approach of the inorganics version but uses UNIFAC for organic activity coefficients. The model is for organics only and not for mixed inorganic-organic systems. ZSR is used for water content. | Not included. | Not included. | Can be used online. |
[email protected] | ||||
UNIPAR [175] | Activity coefficients are assumed to be unity in the organics particle phase. Semi-empirical approximations are used for activity coefficients in the inorganic phase. | Uses the Bertram et al. [176] scheme for liquid-liquid phase separation. Predicts aerosol water content. Organic chemistry is cast as oligomerization in the organics phase and acid-catalyzed reactions in the inorganic phase. Treats formation of organosulfates. | Uses a lumped gas-phase chemistry based on the Master Chemical Mechanism [177] with 30 groups to represent volatile organic compound precursor oxidation products. Pankow [171] equilibrium partitioning between the gas and both condensed phases is assumed. | Offline. |
[email protected] | ||||
SOAP [165] | Uses UNIFAC for short-range interactions and AIOMFAC [89] for medium-long range interactions between electrolytes and organics. This model needs to be coupled to an inorganic thermodynamics model to provide aerosol water content, pH, concentrations of inorganic species and the ionic strength. | Organic compounds are represented by surrogates to reduce complexity. Phase separation based on Gibbs free energy minimization. With dynamic option, a multilayer scheme for aerosol composition is used. Morphology factors are used to account for aerosol physical heterogeneity which impacts diffusion of organics. | Solves full reaction-diffusion system and includes the Kelvin effect. Two solution options: equilibrium or dynamic. Capable of treating organic aerosol high viscosity effects. Uses a thin interface layer without diffusion to avoid artificially limiting absorption (dynamic option). | Can be used online with the equilibrium option. |
http://cerea.enpc.fr/soap/index.html | ||||
Pye et al. [167] | Based on binary mixtures of individual organic constituents and water using a one-constant Margules equation. Coefficient scaling was required to get realistic water uptake. | Calculates the phase separation relative humidity based on You et al. [178]. Water uptake to the organic phase is predicted using -Köhler theory [179]. Uses ISORROPIA II to calculate water uptake by the inorganic phase. | Modified Pankow [171] equilibrium partitioning into the organic phase. The volatility constant is defined to be proportional to the total moles of the absorbing medium including water and the inorganics following Zuend et al. [180]. | CMAQ v5.1 [181] |
[email protected] | ||||
BAT [168] | Based on binary mixtures of individual organic constituents and water based on the Duhem-Margules equation. Model parameters were optimized using AIOMFAC. | Solves for liquid-liquid phase separation. Calculates equilibrium water uptake given the relative humidity. Uses detailed or averaged physicochemical properties of organics. | Coupled to a non-ideal volatility basis set scheme. Uses an equilibrium solver for co-condensation of organics. | Can be used online. |
https://github.com/Gorkowski/Binary_Activity_Thermodynamics_Model |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semeniuk, K.; Dastoor, A. Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review. Atmosphere 2020, 11, 156. https://doi.org/10.3390/atmos11020156
Semeniuk K, Dastoor A. Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review. Atmosphere. 2020; 11(2):156. https://doi.org/10.3390/atmos11020156
Chicago/Turabian StyleSemeniuk, Kirill, and Ashu Dastoor. 2020. "Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review" Atmosphere 11, no. 2: 156. https://doi.org/10.3390/atmos11020156
APA StyleSemeniuk, K., & Dastoor, A. (2020). Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review. Atmosphere, 11(2), 156. https://doi.org/10.3390/atmos11020156