Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Site
2.2. The Neural Network Model
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- EEA. Air Quality in Europe–2019 Report No 10; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Bytnerowicz, A.; Fenn Mark, E.; Cisneros, R.; Schweizer, D.; Burley, J.; Schilling, S.L. Nitrogenous air pollutants and ozone exposure in the central Sierra Nevada and White Mountains of California–Distribution and evaluation of ecological risks. Sci Total Environ. 2019, 654, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ji, D.; He, J.; Li, L.; Du, L.; Cui, Y.; Zhang, H.; Zhou, L.; Li, Z.; Zhou, Y.; et al. Characteristics of Air Pollutants and Greenhouse Gases at a Regional Background Station in Southwestern China. Aerosol. Air Qual. Res. 2019, 19, 1007–1023. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Landi, T.C.; Calzolari, F.; Duchi, R.; Marinoni, A.; Rinaldi, M.; Bonasoni, P. Summer atmospheric composition over the Mediterranean basin: Investigation on transport processes and pollutant export to the free troposphere by observations at the WMO/GAW Mt. Cimone global station (Italy, 2165 m a.s.l.). Atmos. Environ. 2016, 141, 139–152. [Google Scholar] [CrossRef]
- Herrmann, E.; Weingartner, E.; Henne, S.; Vuilleumier, L.; Bukowiecki, N.; Steinbacher, M.; Conen, F.; Collaud Coen, M.; Hammer, E.; Jurányi, Z.; et al. Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. 2015, 120, 9459–9480. [Google Scholar] [CrossRef] [Green Version]
- Balzani Lööv, J.M.; Henne, S.; Legreid, G.; Staehelin, J.; Reimann, S.; Prevot, A.S.H.; Steinbacher, M.; Vollmer, M.K. Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m a.s.l.). J. Geophys. Res. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, A.; Scheifinger, H.; Spang, W.; Weiss, A.; Gilge, S.; Fricke, W.; Ries, L.; Cemas, D.; Jesenovec, B. Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmos. Environ. 2007, 41, 9273–9287. [Google Scholar] [CrossRef]
- Okamoto, S.; Tanimoto, H. A review of atmospheric chemistry observations at mountain sites. Prog. Earth Planet. Sci. 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, A.; Freier, K.; Rehm, T.; Ries, L.; Schunk, C.; Menzel, A.; Thomas, C.K. Multivariate statistical air mass classification for the high-alpine observatory at the Zugspitze Mountain, Germany. Atmos. Chem. Phys. 2019, 19, 12477–12494. [Google Scholar] [CrossRef]
- Deolal, S.P.; Brunner, D.; Steinbacher, M.; Weers, U.; Staehelin, J. Long-term in situ measurements of NOx and NOy at Jungfraujoch 1998–2009: Time series analysis and evaluation. Atmos. Chem. Phys. 2012, 12, 2551–2566. [Google Scholar] [CrossRef] [Green Version]
- Gilge, S.; Plass-Duelmer, C.; Fricke, W.; Kaiser, A.; Ries, L.; Buchmann, B.; Steinbacher, M. Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmos. Chem. Phys. 2010, 10, 12295–12316. [Google Scholar] [CrossRef] [Green Version]
- Cristofanelli, P.; Bonasoni, P. Background ozone in the southern Europe and Mediterranean area: Influence of the transport processes. Environ. Pollut. 2009, 157, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Campana, M.; Li, Y.; Staehelin, J.; Prevot, A.S.H.; Bonasoni, P.; Loetscher, H.; Peter, T. The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa. Atmos. Environ. 2005, 39, 2945–2955. [Google Scholar] [CrossRef]
- Lanz, V.A.; Henne, S.; Staehelin, J.; Hueglin, C.; Vollmer, M.K.; Steinbacher, M.; Buchmann, B.; Reimann, S. Statistical analysis of anthropogenic non-methane VOC variability at a European background location (Jungfraujoch, Switzerland). Atmos. Chem. Phys. 2009, 9, 3445–3459. [Google Scholar] [CrossRef] [Green Version]
- Pyrgou, A.; Hadjinicolaou, P.; Santamouris, M. Enhanced near-surface ozone under heatwave conditions in a Mediterranean island. Sci. Rep. 2018, 8, 9191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofanelli, P.; Di Carlo, P.D.; Altorio, A.; Dari Salisburgo, C.; Tuccella, P.; Biancofiore, P.; Stocchi, P.; Verza, G.P.; Landi, T.C.; Marinoni, A.; et al. Analysis of summer ozone observations at a high mountain site in Central Italy (Campo Imperatore, 2388 m a.s.l.). Pure Appl. Geophys. 2013, 170, 1985–1999. [Google Scholar] [CrossRef] [Green Version]
- Jenkin, M.E.; Young, J.C.; Rickard, A.R. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 15, 11433–11459. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckkam, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ‘online’ chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Biancofiore, F.; Verdecchia, M.; Di Carlo, P.; Tomassetti, B.; Aruffo, E.; Busilacchio, M.; Bianco, S.; Di Tommaso, S.; Colangeli, C. Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 2015, 514, 379–387. [Google Scholar] [CrossRef]
- Chen, J.; de Hoogh, K.; Gulliverd, J.; Hoffmanne, B.; Hertelf, O.; Ketzel, M.; Bauwelinckh, M.; van Donkelaari, A.; Hvidtfeldtj, U.A.; Katsouyannik, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 1–14. [Google Scholar] [CrossRef]
- Mclean Cabanerosa, S.; Calautitb, J.K.; Hughesa, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Arhami, M.; Kamali, N.; Rajabi, M.M. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. R 2013, 20, 4777–4789. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Berastegi, G.; Elias, A.; Barona, A.; Sáenz, J.; Ezcurra, A.; Diaz de Argandona, J. Prediction of air pollution levels using neural networks: Influence of spatial variability. WIT Trans. Ecol. Environ. 2008, 116, 409–417. [Google Scholar]
- Draxler, R.R. HYSPLIT4 User’s Guide; Tech. Rep. NOAA Tech. Memo. ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999.
- European Environmental Agency (EEA). Air Quality in Europe–2018 Report. EEA Report, No 12. 2018. Available online: https://doi.org/10.2800/777411 (accessed on 15 March 2019).
Plume | Simulation | Input Parameters | R | NMSE | FB | FA2 |
---|---|---|---|---|---|---|
Whole time series | ALL | T, RH, solar radiation, Wind speed, Wind direction, P | 0.8795 | 0.0208 | −0.0024 | 0.9991 |
DYN | Wind speed, Wind direction, P | 0.7621 | 0.0389 | −0.0016 | 0.9955 | |
PHO | T, RH, solar radiation | 0.7379 | 0.0419 | −0.0041 | 0.9964 | |
ALLO3 | T, RH, solar radiation, Wind speed, Wind direction, P, O3 | 0.8890 | 0.0194 | −0.0027 | 0.9982 | |
PHOO3 | T, RH, solar radiation, O3 | 0.7997 | 0.0333 | −7.8421 × 10−4 | 0.9973 | |
I plume | ALL | T, RH, solar radiation, Wind speed, Wind direction, P | 0.6072 | 0.0625 | 0.1029 | 0.9630 |
DYN | Wind speed, Wind direction, P | 0.6164 | 0.0786 | 0.1580 | 0.9630 | |
PHO | T, RH, solar radiation | 0.3344 | 0.1273 | 0.2204 | 0.9259 | |
ALLO3 | T, RH, solar radiation, Wind speed, Wind direction, P, O3 | 0.7090 | 0.0492 | 0.1024 | 1 | |
PHOO3 | T, RH, solar radiation, O3 | 0.3686 | 0.1378 | 0.2423 | 0.9259 | |
II plume | ALL | T, RH, solar radiation, Wind speed, Wind direction, P | 0.9195 | 0.0276 | 0.0306 | 1 |
DYN | Wind speed, Wind direction, P | 0.7996 | 0.0891 | 0.1208 | 0.9583 | |
PHO | T, RH, solar radiation | 0.8414 | 0.0731 | 0.1316 | 1 | |
ALLO3 | T, RH, solar radiation, Wind speed, Wind direction, P, O3 | 0.9094 | 0.0296 | 0.0076 | 1 | |
PHOO3 | T, RH, solar radiation, O3 | 0.9086 | 0.0295 | 0.0022 | 1 | |
III plume | ALL | T, RH, solar radiation, Wind speed, Wind direction, P | 0.7913 | 0.0252 | 0.0210 | 1 |
DYN | Wind speed, Wind direction, P | 0.8179 | 0.0256 | 0.0542 | 1 | |
PHO | T, RH, solar radiation | 0.4115 | 0.0747 | 0.1146 | 1 | |
ALLO3 | T, RH, solar radiation, Wind speed, Wind direction, P, O3 | 0.8620 | 0.0165 | 0.0089 | 1 | |
PHOO3 | T, RH, solar radiation, O3 | 0.3351 | 0.0786 | 0.1161 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruffo, E.; Di Carlo, P.; Cristofanelli, P.; Bonasoni, P. Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site. Atmosphere 2020, 11, 173. https://doi.org/10.3390/atmos11020173
Aruffo E, Di Carlo P, Cristofanelli P, Bonasoni P. Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site. Atmosphere. 2020; 11(2):173. https://doi.org/10.3390/atmos11020173
Chicago/Turabian StyleAruffo, Eleonora, Piero Di Carlo, Paolo Cristofanelli, and Paolo Bonasoni. 2020. "Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site" Atmosphere 11, no. 2: 173. https://doi.org/10.3390/atmos11020173
APA StyleAruffo, E., Di Carlo, P., Cristofanelli, P., & Bonasoni, P. (2020). Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site. Atmosphere, 11(2), 173. https://doi.org/10.3390/atmos11020173