Assessment of the Outdoor Thermal Comfort in Oases Settlements
Abstract
:1. Introduction
- What are the outdoor thermal comfort conditions in oases settlements during summer?
- How far is the oasis effect beneficial for improving thermal comfort conditions in oases settlements during summer?
- How to improve outdoor spaces design and relieve heat stress in the urban oasis Complex of Tolga, one of the largest oasis complexes of the Saharan Desert in North Africa and Algeria?
2. Literature Review
3. Methodology
3.1. Literature Review
3.2. Field Studies
3.2.1. Site’s Selection Criteria
- Three points in Old Lichana (1, 2, 3),
- Three points in Old Tolga (4, 5, 6),
- Three points in New Tolga Downtown (7, 8, 9),
- Two points in Old Farfar (10, 11), and
- A reference point, inside the Palm Grove (12).
3.2.2. Meteorological Measurements and Fish-Eye Images
3.3. Modeling Process (RayMan Model)
4. Results
4.1. SVF and Thermal Comfort Levels Assessment Heat Stress Level’s Assessment
4.2. PET and Tmrt Values Assessment at the Measurement Points
4.3. Assessment of PET and Tmrt Depending on the SVF
5. Discussion
5.1. Findings
5.2. Strength and Limitations of the Study
5.3. Implication on Practice and Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Battesti, V. Jardins au Désert: Évolution des Pratiques et Savoirs Oasiens: Jérid Tunisien; IRD Éditions: Paris, France, 2005. [Google Scholar]
- Hadagha, F.Z.; Farhi, B.E.; Farhi, A.; Petrisor, A.I. Multifunctionality of the oasis ecosystem. Case study: Biskra Oasis, Algeria. Int. J. Contemp. Urban Aff. 2018, 2, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lall, S.V.; Henderson, J.V.; Venables, A.J. Africa’s Cities: Opening Doors to the World; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Newman, P.; Beatley, T.; Boyer, H. Resilient Cities: Responding to Peak Oil and Climate Change; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Kouzmine, Y.; Fontaine, J.; Yousfi, B.-E.; Otmane, T. Etapes de la structuration d’un désert: L’espace saharien algérien entre convoitises économiques, projets politiques et aménagement du territoire. Annales de Géographie 2009, 6, 659–685. [Google Scholar]
- Coté, M. La Ville et le Désert: Le Bas-Sahara Algérien; Karthala Éditions: Paris, France, 2005. [Google Scholar]
- Attia, S.; Duchhart, I. Bioclimatic landscape design in extremely hot and arid climates. In Proceedings of the 27th Conference of Passive and Low Energy Architecture (PLEA) 2011, Louvain-la-Neuve, Belgium, 13–15 July 2011. [Google Scholar]
- Aljawabra, F.; Nikolopoulou, M. Influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intell. Build. Int. 2010, 2, 198–217. [Google Scholar]
- Attia, S. The Bioclimatic Zones Concept Landscape Design Strategy for site planning in hot arid climates. In Proceedings of the 3rd CIB International Conference on Smart and Sustainable Built Environment (SABSE), TU-Delft, The Netherlands, June 2009. [Google Scholar]
- Venhari, A.A.; Tenpierik, M.; Taleghani, M. The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. J. Arid Environ. 2019, 166, 68–76. [Google Scholar] [CrossRef]
- Biqaraz, B.; Fayaz, R.; Naeeni, G.H. A comparison of outdoor thermal comfort in historical and contemporary urban fabrics of Lar City. Urban Clim. 2019, 27, 212–226. [Google Scholar] [CrossRef]
- Potchter, O.; Ben-Shalom, H.I. Urban warming and global warming: Combined effect on thermal discomfort in the desert city of Beer Sheva, Israel. J. Arid Environ. 2013, 98, 113–122. [Google Scholar] [CrossRef]
- Cohen, P.; Shashua-Bar, L.; Keller, R.; Gil-Ad, R.; Yaakov, Y.; Lukyanov, V.; Kutiel, P.B.; Tanny, J.; Cohen, S.; Potchter, O. Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Build. Environ. 2019, 160, 106169. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N.; Dudek, S. Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustain. Cities Soc. 2016, 22, 136–145. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Hirashima, S.d.S.; Katzschner, A.; Ferreira, D.G.; de Assis, E.S.; Katzschner, L. Thermal comfort comparison and evaluation in different climates. Urban Clim. 2018, 23, 219–251. [Google Scholar] [CrossRef]
- Roshan, G.; Almomenin, H.S.; da Silveira Hirashima, S.Q.; Attia, S. Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Clim. 2019, 27, 8–23. [Google Scholar] [CrossRef]
- Roshan, G.R.; Farrokhzad, M.; Attia, S. Defining thermal comfort boundaries for heating and cooling demand estimation in Iran’s urban settlements. Build. Environ. 2017, 121, 168–189. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Chalfoun, N.V. Sustainable Urban Design in Arid Regions; Integrating Energy and Comfort. In Collaborative Symposium: Urban Design in Arid Regions; The University of Arizona: Tucson, AZ, USA; The Pontificia Universidad Catolica De Chile: Santiago, Chile, 2003. [Google Scholar]
- Givoni, B.; Noguchi, M.; Saaroni, H.; Potchter, O.; Yaakov, Y.; Feller, N.; Becker, S. Outdoor comfort research issues. Energy Build. 2003, 35, 77–86. [Google Scholar] [CrossRef]
- Saaroni, H.; Bitan, A.; Dor, E.B.; Feller, N. The mixed results concerning the ‘oasis effect’ in a rural settlement in the Negev Desert, Israel. J. Arid Environ. 2004, 58, 235–248. [Google Scholar] [CrossRef]
- Potchter, O.; Goldman, D.; Kadish, D.; Iluz, D. The oasis effect in an extremely hot and arid climate: The case of southern Israel. J. Arid Environ. 2008, 72, 1721–1733. [Google Scholar] [CrossRef]
- Boudjellal, L.; Bourbia, F. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. Int. J. Environ. Stud. 2018, 75, 309–320. [Google Scholar] [CrossRef]
- Rchid, A. The effects of green spaces (Palme trees) on the microclimate in arid zones, case study: Ghardaia, Algeria. Energy Procedia 2012, 18, 10–20. [Google Scholar]
- Sellami, M.H.; Sifaoui, M.S. Measurements of microclimatic factors inside the oasis: Interception and sharing of solar radiation. Renew. Energy 1998, 13, 67–76. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim. Res. 2005, 28, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Balogun, I.A.; Daramola, M.T. The outdoor thermal comfort assessment of different urban configurations within Akure City, Nigeria. Urban Clim. 2019, 29, 100489. [Google Scholar] [CrossRef]
- TESTO. TESTO 480 Climate Measuring Instrument. Available online: https://static-int.testo.com/media/cf/01/1ff8d8380280/testo-480-Instruction-manual.pdf (accessed on 30 November 2019).
- Sebti, M.; Alkama, D.; Bouchair, A. Assessment of the effect of modern transformation on the traditional settlement ‘Ksar’of Ouargla in southern Algeria. Front. Archit. Res. 2013, 2, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: Abingdon, UK, 2002. [Google Scholar]
- Lomas, K.J.; Porritt, S.M. Overheating in Buildings: Lessons from Research; Taylor & Francis: Abingdon, UK, 2017. [Google Scholar]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies—A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Fahmy, M.; Mahdy, M.; Mahmoud, S.; Abdelalim, M.; Ezzeldin, S.; Attia, S. Influence of urban canopy green coverage and future climate change scenarios on energy consumption of urban developments. Energy Rep. 2020, 25, 125. [Google Scholar]
- Baruti, M.M.; Johansson, E.; Astrand, J. Review of studies on outdoor thermal comfort in warm humid climates: Challenges of informal urban fabric. Int. J. Biometeorol. 2019, 63, 1449–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semahi, S.; Zemmouri, N.; Singh, M.K.; Attia, S. Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Build. Environ. 2019, 161, 106271. [Google Scholar] [CrossRef] [Green Version]
Sites | Area (ha) | Location | SVF | Street Direction | Width of Streets (m) | Height of the Streets (m) |
---|---|---|---|---|---|---|
Old Lichana | 4.20 | 1 | 0.02 | E-W | 2.20 | 3.20 |
2 | 0.07 | E-W | 3.70 | 3.50 | ||
3 | 0.27 | N-S | 3.50 | 5.75 | ||
Old Tolga | 14 | 4 | 0.32 | N-S | 3.40 | 3.70 |
5 | 0.18 | E-W | 3.15 | 7.10 | ||
6 | 0.56 | N-S | 4.00 | 3.00 | ||
New Tolga Downtown | 22 | 7 | 0.39 | E-W | 3.20 | 6.40 |
8 | 0.42 | N-S | 3.90 | 6.40 | ||
9 | 0.67 | - | - | - | ||
Old Farfar | 2.50 | 10 | 0.05 | N-S | 2.30 | 3.10 |
11 | 0.34 | E-W | 2.75 | 6.20 | ||
Palm Grove | - | 12 | 0.37 | - | - | - |
Meteorological Data Parameters | |||||
---|---|---|---|---|---|
Variable | Device | Probe Reference | Unit | Accuracy | Method of Storage |
Air temperature (Ta) | Testo 480 0563 4800 | 12 Φ 0636 9743 | °C | ±0.5 °C | Automatic |
Relative humidity (RH) | - | 12 Φ 0636 9743 | % | ±1.0% | Automatic |
Wind velocity (Va) | - | Helix 100 Φ mm 0635 9343 | m/s | ±0.1 m/s | Automatic |
Surface temperature (Ts) | - | 12 Φ (200 mm) 0635 1543 | °C | ±0.5 °C | Automatic |
Fish-eye images parameters | |||||
Camera | Focal length | Resolution | Dimensions | Colors representation | |
Canon EOS 6D | 8 mm | 72 ppp | 5472 × 3648 | sRGB |
Meteorological Data | Unit | Month | Old Lichana | Old Tolga | New Tolga Downtown | Old Farfar | Palm Grove | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
Ta 05:00 A.M. | °C | July | 30.7 | 31.8 | 31.8 | 30 | 30.2 | 29.8 | 30.9 | 30.8 | 30 | 35.3 | 35.3 | 29.2 |
Ta 09:00 A.M. | 34.8 | 36 | 39.6 | 34 | 33.8 | 36 | 32.5 | 34.4 | 33.6 | 37.5 | 37.5 | 37 | ||
Ta 01:00 P.M. | 40.1 | 42.4 | 45.9 | 41.9 | 39.2 | 40.6 | 38.7 | 37.6 | 39.5 | 41.4 | 41.5 | 43.9 | ||
Ta 05:00 P.M. | 42.3 | 43 | 43.9 | 42.4 | 40.2 | 40.8 | 38.2 | 38.8 | 39 | 42.2 | 42.8 | 39.8 | ||
Ta 09:00 P.M. | 36.6 | 38.2 | 38.1 | 33.7 | 34.5 | 34.6 | 35.5 | 35.3 | 34.9 | 38.9 | 39.1 | 34.4 | ||
Ta 05:00 A.M. | °C | August | 28.1 | 28.4 | 27.6 | 27.8 | 26.9 | 27.8 | 30.3 | 28.4 | 28.6 | 28.1 | 27.7 | 27.2 |
Ta 09:00 A.M. | 31.7 | 32.2 | 33.1 | 31.5 | 30.3 | 31.7 | 33.7 | 32.2 | 32.8 | 30.8 | 30.6 | 33.1 | ||
Ta 01:00 P.M. | 35 | 35.8 | 36.2 | 34.1 | 32.6 | 35.2 | 38.2 | 40 | 38.7 | 34.4 | 34.3 | 33.8 | ||
Ta 05:00 P.M. | 33.6 | 34.1 | 34.6 | 33.1 | 33 | 34.5 | 39.5 | 39.3 | 39.3 | 31.7 | 31.1 | 33.4 | ||
Ta 09:00 P.M. | 30 | 30.8 | 30.3 | 29.2 | 29.1 | 30.1 | 34.6 | 35 | 34.1 | 29.7 | 29.4 | 28.8 | ||
RH 05:00 A.M. | % | July | 35.4 | 33.2 | 29.8 | 32.8 | 30.7 | 29.6 | 26.9 | 27.4 | 28.4 | 20.5 | 21.7 | 45.8 |
RH 09:00 A.M. | 32.3 | 30 | 22 | 26.9 | 26.6 | 24.9 | 33.1 | 31.2 | 31.6 | 19.5 | 20 | 33.9 | ||
RH 01:00 P.M. | 20.9 | 18.2 | 15.2 | 17.6 | 19.6 | 19 | 23.4 | 23.2 | 23.2 | 16.3 | 16.2 | 21.4 | ||
RH 05:00 P.M. | 19.9 | 17 | 14.4 | 17.8 | 18.6 | 21.4 | 20.6 | 20.9 | 20.3 | 14.5 | 14 | 35.8 | ||
RH 09:00 P.M. | 22.8 | 20.1 | 19.1 | 28.7 | 26.5 | 23.9 | 24 | 24.7 | 24.7 | 17 | 16.8 | 35.9 | ||
RH 05:00 A.M. | % | August | 55.3 | 53.9 | 57 | 48.5 | 50.2 | 50.7 | 42 | 47.1 | 46.4 | 57.3 | 59.4 | 60.8 |
RH 09:00 A.M. | 47.8 | 47.1 | 45.4 | 51.8 | 53.3 | 50.8 | 36.5 | 38.2 | 38.1 | 54.4 | 53.1 | 47.3 | ||
RH 01:00 P.M. | 39 | 36.4 | 36.8 | 42.7 | 46.8 | 41.3 | 24.8 | 23 | 24.2 | 38.7 | 36.4 | 45.4 | ||
RH 05:00 P.M. | 40.8 | 41.2 | 40.3 | 41.3 | 43.8 | 41.1 | 18.3 | 17.9 | 18.4 | 33.1 | 36.7 | 48.4 | ||
RH 09:00 P.M. | 52.1 | 49.2 | 49.8 | 48.9 | 47.7 | 44.4 | 28.9 | 29.1 | 30.1 | 40.9 | 43.1 | 60.1 | ||
Va 05:00 A.M. | m/s | July | 0.75 | 0.65 | 0.0 | 0.20 | 1.1 | 0.0 | 1.15 | 1.35 | 0.4 | 0.7 | 0.2 | 0.0 |
Va 09:00 A.M. | 0.95 | 0.85 | 0.5 | 0.95 | 1.7 | 0.4 | 0.85 | 0.8 | 0.45 | 2.25 | 0.25 | 0.55 | ||
Va 01:00 P.M. | 0.45 | 0.3 | 1.5 | 0.85 | 0.65 | 0.4 | 1.15 | 1.3 | 0.4 | 0.5 | 0.0 | 0.15 | ||
Va 05:00 P.M. | 0.25 | 0.00 | 0.0 | 0.0 | 0.15 | 0.0 | 0.8 | 1.1 | 0.5 | 0.0 | 0.0 | 0.0 | ||
Va 09:00 P.M. | 0.25 | 0.4 | 0.0 | 0.75 | 0.55 | 0.5 | 0.0 | 0.8 | 0.2 | 1.0 | 0.7 | 0.0 | ||
Va 05:00 A.M. | m/s | August | 0.65 | 0.95 | 0.6 | 0.3 | 0.5 | 0.3 | 0.65 | 0.45 | 0.25 | 0.0 | 0.0 | 0.35 |
Va 09:00 A.M. | 1.2 | 0.2 | 0.45 | 0.6 | 0.6 | 0.5 | 0.95 | 1.65 | 0.5 | 0.2 | 0.25 | 0.7 | ||
Va 01:00 P.M. | 0.65 | 0.2 | 0.2 | 0.7 | 1.3 | 0.5 | 1.3 | 1.55 | 0.4 | 1.05 | 0.35 | 0.25 | ||
Va 05:00 P.M. | 0.4 | 0.3 | 0.2 | 0.75 | 0.25 | 0.0 | 1.3 | 1.95 | 0.25 | 0.9 | 0.55 | 0.6 | ||
Va 09:00 P.M. | 0.75 | 0.4 | 0.6 | 0.25 | 0.45 | 0.0 | 0.55 | 0.8 | 0.25 | 0.2 | 0.25 | 0.0 | ||
Ts 05:00 A.M. | °C | July | 32.8 | 33.2 | 33 | 31.3 | 32.3 | 30.6 | 32.4 | 31.3 | 32 | 35.9 | 35.5 | 32.5 |
Ts 09:00 A.M. | 34.7 | 36 | 38 | 33.1 | 33.3 | 35.3 | 32 | 34.4 | 31.9 | 36.4 | 36.8 | 34.5 | ||
Ts 01:00 P.M. | 39.1 | 40.9 | 45.9 | 42.7 | 37.4 | 43.4 | 38.1 | 40.7 | 37.5 | 38.6 | 39.8 | 38.8 | ||
Ts 05:00 P.M. | 40.4 | 42.7 | 43.9 | 42.1 | 39.2 | 40.7 | 40.6 | 39.5 | 40 | 39.4 | 40.9 | 40 | ||
Ts 09:00 P.M. | 38 | 38.9 | 38.1 | 35.8 | 35.4 | 35.9 | 35.9 | 35.3 | 35.5 | 38.6 | 38.6 | 37.9 | ||
Ts 05:00 A.M. | °C | August | 29 | 29.8 | 28 | 28.3 | 28.4 | 29.3 | 30.4 | 29.3 | 31.3 | 28.6 | 28.1 | 30 |
Ts 09:00 A.M. | 31.2 | 31.8 | 33.7 | 32.4 | 31.1 | 33 | 31.7 | 31.7 | 32 | 29.7 | 30 | 31 | ||
Ts 01:00 P.M. | 33.9 | 35 | 37 | 34.4 | 30.5 | 37.4 | 36.3 | 39.7 | 36 | 32 | 32.7 | 33.4 | ||
Ts 05:00 P.M. | 32.9 | 33.9 | 35 | 35.6 | 32.4 | 38 | 43.7 | 39 | 39 | 31.1 | 30.8 | 30.2 | ||
Ts 09:00 P.M. | 30.5 | 31.6 | 31.1 | 30.4 | 29.2 | 31 | 35 | 34.8 | 34.2 | 30.3 | 30.3 | 29.5 |
District | Measurement Point | PET 5:00 a.m. | PET 9:00 a.m. | PET 1:00 p.m. | PET 5:00 p.m. | PET 9:00 p.m. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
July | August | July | August | July | August | July | August | July | August | ||
Old Lichana | 1 | 30 | 27.3 | 39.9 | 38.5 | 49.7 | 43.8 | 47.3 | 37.8 | 36.7 | 29.3 |
2 | 31.5 | 27.4 | 44.8 | 41.5 | 52.1 | 45.6 | 48.3 | 38.7 | 38.2 | 31.3 | |
3 | 31.3 | 26.4 | 45.3 | 39.1 | 55.1 | 45.7 | 53 | 41.9 | 37.4 | 29.2 | |
Old Tolga | 4 | 28.8 | 26.7 | 38.6 | 36.7 | 50.6 | 42.7 | 47.5 | 37.5 | 32.8 | 28.3 |
5 | 28.8 | 26.1 | 40.2 | 35.3 | 47.6 | 39.4 | 48.3 | 40.5 | 33.8 | 28 | |
6 | 27.6 | 26.2 | 41.5 | 37.3 | 48.9 | 45 | 49.3 | 43.8 | 32.7 | 28.4 | |
New Tolga Downtown | 7 | 28.9 | 28.4 | 40.3 | 40.1 | 46.4 | 45.9 | 46.5 | 47.3 | 33.9 | 33.2 |
8 | 28.3 | 26.6 | 39.5 | 35.7 | 45.9 | 49.1 | 46.2 | 45.6 | 33.8 | 33.5 | |
9 | 28.1 | 26.7 | 38.8 | 41.1 | 47.6 | 50.6 | 44.3 | 44.1 | 33 | 32 | |
Old Farfar | 10 | 35.1 | 28.4 | 42.1 | 36.5 | 50.4 | 42 | 46.9 | 36.2 | 38.5 | 29.8 |
11 | 33.9 | 26.9 | 46.6 | 39.8 | 50.2 | 43.2 | 50.7 | 37.9 | 38.2 | 28 | |
Palm Grove | 12 | 28.8 | 25.7 | 45.4 | 43.5 | 51.6 | 44.3 | 48.8 | 39.5 | 34 | 27.8 |
Thermal comfort stress level | 17–26 | 26–28 | 28–37 | 37–42 | >42 | ||||||
Neutral | Slightly warm | Warm | Hot | Very hot | |||||||
No thermal | Slight heat | Moderate heat | Strong heat | Extreme heat | |||||||
stress | stress | stress | stress | stress |
Thermal Sensation | Mid/West Europe 1996 (a) | Beer Sheva, Israel 2019 (b) |
---|---|---|
Cfb | BWh | |
Very Cold | 4 | 6 |
Cold | 8 | 8 |
Cool | 13 | 13 |
Slightly Cool | 18 | 17 |
Neutral | 23 | 26 |
Slightly Warm | 29 | 28 |
Warm | 35 | 37 |
Hot | 41 | 42 |
Very Hot | - | - |
PET. Tmrt Difference’s Average | dif 5:00 a.m. | dif 9:00 a.m. | dif 1:00 p.m. | dif 5:00 p.m. | dif 9:00 p.m. | |||||
---|---|---|---|---|---|---|---|---|---|---|
July | August | July | August | July | August | July | August | July | August | |
∆ dif max (°C) | 1.00 | 0.80 | 10.9 | 10.5 | 9.00 | 10.3 | 7.70 | 8.20 | −0.20 | 0.20 |
∆ dif min (°C) | −2.10 | −1.70 | 4.60 | 5.10 | 5.20 | 7.40 | 3.20 | 4.00 | −2.40 | 2.30 |
Average (°C) | −0.63 | −0.81 | 7.08 | 7.88 | 7.14 | 8.73 | 5.27 | 6.08 | −1.20 | −1.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matallah, M.E.; Alkama, D.; Ahriz, A.; Attia, S. Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere 2020, 11, 185. https://doi.org/10.3390/atmos11020185
Matallah ME, Alkama D, Ahriz A, Attia S. Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere. 2020; 11(2):185. https://doi.org/10.3390/atmos11020185
Chicago/Turabian StyleMatallah, Mohamed Elhadi, Djamel Alkama, Atef Ahriz, and Shady Attia. 2020. "Assessment of the Outdoor Thermal Comfort in Oases Settlements" Atmosphere 11, no. 2: 185. https://doi.org/10.3390/atmos11020185
APA StyleMatallah, M. E., Alkama, D., Ahriz, A., & Attia, S. (2020). Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere, 11(2), 185. https://doi.org/10.3390/atmos11020185