Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
Abstract
:1. Introduction
2. Data and Modeling
2.1. Lidar
2.2. SBUV/2
2.3. Oslo Chemistry Transport Model (CTM3)
2.4. EMAC Chemistry Climate Model (CCM)
2.5. NDACC UV Irradiance Data
2.6. Methodology
3. Results and Discussion
3.1. Stratospheric Ozone Trends
3.2. Effect of Chemistry on Ozone Trends
3.3. Effect of GHGs on Ozone Trends
3.4. Effect of GHGs on Surface DNA Active UV-B Irradiance
4. Conclusions
- Measurements and CTM simulations with the Oslo model after 1997 for the selected five lidar stations’ locations show a statistically significant increasing trend in ozone in the upper stratosphere, above 7 hPa, an insignificant decreasing trend in the middle stratosphere, between 7 and 30 hPa, and a significant decreasing trend in the lower stratosphere, between 30 and 100 hPa.
- This interchange of positive and negative trends in the vertical ozone profile has resulted in insignificant trends, both in the total ozone column and the tropopause pressure, during the period of study (1998–2016).
- As expected from the Oslo CTM3 simulations, the effect of halogen reduction on ozone is maximized at 1–7 hPa at all locations. Comparison between CTM simulations, with fixed and without fixed halogens at 1998 levels, showed that the reduction of halogen-mixing ratios after 1997 explains about 55% of the observed upward trend in the upper stratospheric ozone (1–7 hPa) (i.e., trend from main simulation: +0.9% per decade, trend from simulation with fixed halogens: +0.4% per decade) and about 24% of the trend in the lower stratospheric ozone (30–100 hPa) (i.e., trend from main simulation: −2.1% per decade, trend from simulation with fixed halogens: −2.6% per decade).
- The effect of GHGs increase on stratospheric profile ozone trends cannot be identified in the short period 1998–2016. As expected from the EMAC CCM calculations, the effect of GHGs becomes evident after the middle of this century.
- The EMAC CCM projections indicate significant positive trends in the upper stratosphere after the year 2050, insignificant trends in the middle stratosphere and significant negative trends in the lower stratosphere (e.g., [27,28]). Total ozone does not show significant trends after the year 2050 (−0.1% per decade).
- Solar UV-B irradiance active for DNA damage at the five lidar stations is estimated to increase on average by +1.3% per decade after the year 2050, associated with a significant decrease in cloud cover of −1.4% per decade due to the evolution of GHGs. In that case, the adverse effects of excessive UV-B irradiation at these locations are expected to increase due to future global warming.
- Our estimates regarding the long-term changes of modeled UV are strongly determined by the cloud behavior in the specific model simulation, and as such, our conclusions about the future behavior of UV are subjected to uncertainties induced by the uncertainties in modeling future clouds. It is beyond the scope of this paper to resolve the issues with clouds in the model.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- WMO. Executive Summary: Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project–Report No. 58; World Meteorological Organization: Geneva, Switzerland, 2018; p. 67. [Google Scholar]
- den Outer, P.N.; Slaper, H.; Kaurola, J.; Lindfors, A.; Kazantzidis, A.; Bais, A.F.; Feister, U.; Junk, J.; Janouch, M.; Josefsson, W. Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res. 2010, 115, D10102. [Google Scholar] [CrossRef]
- WMO. Scientific Assessment of Ozone Depletion: 2010; Global Ozone Research and Monitoring Project–Report No. 52; World Meteorological Organization: Geneva, Switzerland, 2011; p. 516. [Google Scholar]
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerefos, C.; Kapsomenakis, J.; Eleftheratos, K.; Tourpali, K.; Petropavlovskikh, I.; Hubert, D.; Godin-Beekmann, S.; Steinbrecht, W.; Frith, S.; Sofieva, V.; et al. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies. Atmos. Chem. Phys. 2018, 18, 6427–6440. [Google Scholar] [CrossRef] [Green Version]
- Petropavlovskikh, I.; Godin-Beekmann, S.; Hubert, D.; Damadeo, R.; Hassler, B.; Sofieva, V. (Eds.) SPARC/IO3C/GAW Report on Long-Term Ozone Trends and Uncertainties in the Stratosphere; SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018. Available online: www.sparc-climate.org/publications/sparc-reports (accessed on 24 February 2020). [CrossRef]
- Harris, N.R.P.; Hassler, B.; Tummon, F.; Bodeker, G.E.; Hubert, D.; Petropavlovskikh, I.; Steinbrecht, W.; Anderson, J.; Bhartia, P.K.; Boone, C.D.; et al. Past changes in the vertical distribution of ozone–Part 3: Analysis and interpretation of trends. Atmos. Chem. Phys. 2015, 15, 9965–9982. [Google Scholar] [CrossRef] [Green Version]
- Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Peter, T.; Tummon, F.; Stübi, R.; Stenke, A.; Anderson, J.; et al. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef] [Green Version]
- Wargan, K.; Orbe, C.; Pawson, S.; Ziemke, J.R.; Oman, L.D.; Olsen, M.A.; Coy, L.; Knowland, K.E. Recent decline in extratropical lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett. 2018, 45, 5166–5176. [Google Scholar] [CrossRef]
- Bais, A.F.; Tourpali, K.; Kazantzidis, A.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Chipperfield, M.P.; Dameris, M.; Eyring, V.; Garny, H.; et al. Projections of UV radiation changes in the 21st century: Impact of ozone recovery and cloud effects. Atmos. Chem. Phys. 2011, 11, 7533–7545. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, T.; Sica, R.J.; van Gijsel, J.A.E.; Godin-Beekmann, S.; Haefele, A.; Trickl, T.; Payen, G.; Liberti, G. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms–Part 2: Ozone DIAL uncertainty budget. Atmos. Meas. Tech. 2016, 9, 4051–4078. [Google Scholar] [CrossRef] [Green Version]
- Steinbrecht, W.; Froidevaux, L.; Fuller, R.; Wang, R.; Anderson, J.; Roth, C.; Bourassa, A.; Degenstein, D.; Damadeo, R.; Zawodny, J.; et al. An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys. 2017, 17, 10675–10690. [Google Scholar] [CrossRef] [Green Version]
- De Mazière, M.; Thompson, A.M.; Kurylo, M.J.; Wild, J.D.; Bernhard, G.; Blumenstock, T.; Braathen, G.O.; Hannigan, J.W.; Lambert, J.-C.; Leblanc, T.; et al. The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys. 2018, 18, 4935–4964. [Google Scholar] [CrossRef] [Green Version]
- Godin-Beekmann, S.; Porteneuve, J.; Garnier, A. Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92° N, 5.71° E). J. Environ. Monit. 2003, 5, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. B. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Søvde, O.A.; Prather, M.J.; Isaksen, I.S.A.; Berntsen, T.K.; Stordal, F.; Zhu, X.; Holmes, C.D.; Hsu, J. The chemical transport model Oslo CTM3. Geosci. Model Dev. 2012, 5, 1441–1469. [Google Scholar] [CrossRef] [Green Version]
- Prather, M.J. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c. Geosci. Model Dev. 2015, 8, 2587–2595. [Google Scholar] [CrossRef] [Green Version]
- Sander, S.P.; Abbatt, J.; Barker, J.R.; Burkholder, J.B.; Friedl, R.R.; Golden, D.M.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; Moortgat, G.K.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies; Evaluation No. 17; JPL Publication: Jet Propulsion Laboratory, Pasadena, CA, USA, 2011. Available online: http://jpldataeval.jpl.nasa.gov (accessed on 12 September 2018).
- Jöckel, P.; Tost, H.; Pozzer, A.; Kunze, M.; Kirner, O.; Brenninkmeijer, C.A.M.; Brinkop, S.; Cai, D.S.; Dyroff, C.; Eckstein, J.; et al. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51. Geosci. Model Dev. 2016, 9, 1153–1200. [Google Scholar] [CrossRef] [Green Version]
- Dhomse, S.S.; Kinnison, D.; Chipperfield, M.P.; Salawitch, R.J.; Cionni, I.; Hegglin, M.I.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bednarz, E.M.; et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 2018, 18, 8409–8438. [Google Scholar] [CrossRef] [Green Version]
- Sander, R.; Jöckel, P.; Kirner, O.; Kunert, A.T.; Landgraf, J.; Pozzer, A. The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP). Geosci. Model Dev. 2014, 7, 2653–2662. [Google Scholar] [CrossRef] [Green Version]
- Brühl, C.; Crutzen, P.J. On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys. Res. Lett. 1989, 16, 703–706. [Google Scholar] [CrossRef]
- McKenzie, R.; Bernhard, G.; Liley, B.; Disterhoft, P.; Rhodes, S.; Bais, A.; Morgenstern, O.; Newman, P.; Oman, L.; Brogniez, C.; et al. Success of Montreal Protocol Demonstrated by Comparing HighQuality UV Measurements with “World Avoided” Calculations from Two Chemistry-Climate Models. Sci. Rep. 2019, 9, 12332. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef] [PubMed]
- Braesicke, P.; Neu, J.; Fioletov, V.; Godin-Beekmann, S.; Hubert, D.; Petropavlovskikh, I.; Shiotani, M.; Sinnhuber, B.-M. Update on Global Ozone: Past, Present, and Future. In Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project–Report No. 58; World Meteorological Organization: Geneva, Switzerland, 2018; Chapter 3. [Google Scholar]
- Langematz, U.; Tully, M.; Calvo, N.; Dameris, M.; de Laat, A.T.J.; Klekociuk, A.; Müller, R.; Young, P. Polar Stratospheric Ozone: Past, Present, and Future. In Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project–Report No. 58; World Meteorological Organization: Geneva, Switzerland, 2018; Chapter 4. [Google Scholar]
Station | Latitude | Longitude | Elevation | Starting Year |
---|---|---|---|---|
Hohenpeissenberg (HHP) | 47.8° N | 11.0° E | 975 m | 1987 |
Haute Provence (OHP) | 43.9° N | 5.7° E | 674 m | 1985 |
Table Mountain (TMO) | 34.4° N | 117.7° W | 2285 m | 1989 |
Mauna Loa (MLO) | 19.5° N | 155.6° W | 3391 m | 1993 |
Lauder (LAU) | 45.0° S | 169.7° E | 370 m | 1994 |
(a) Hohenpeissenberg (47.8° N, 11.0° E) | |||||
Oslo CTM3 1 | SBUV (v8.6) 2 | EMAC CCM 3 (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | 1.2 ± 0.3 * | 0.6 ± 0.3 | 1.9 ± 0.3 * | 1.5 ± 0.3 * | 1.7 ± 0.5 * |
7–30 hPa | −0.3 ± 0.4 | −0.1 ± 0.4 | 0.4 ± 0.4 | 0.5 ± 0.4 | 1.8 ± 0.6 * |
30–100 hPa | −1.3 ± 0.5 | −1.8 ± 0.5 * | −1.0 ± 0.5 | 1.0 ± 0.6 | 0.7 ± 0.7 |
(b) Haute Provence (43.9° N, 5.7° E) | |||||
Oslo CTM3 | SBUV (v8.6) | EMAC CCM (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | 1.2 ± 0.3 * | 0.7 ± 0.3 | 1.7 ± 0.3 * | 1.6 ± 0.3 * | 0.4 ± 0.5 |
7–30 hPa | −0.6 ± 0.4 | −0.4 ± 0.4 | 0.0 ± 0.4 | −0.1 ± 0.4 | 0.3 ± 0.5 |
30–100 hPa | −1.3 ± 0.5 | −1.8 ± 0.5 * | −1.0 ± 0.5 | 0.4 ± 0.7 | −0.1 ± 0.7 |
(c) Table Mountain (34.4° N, 117.7° W) | |||||
Oslo CTM3 | SBUV (v8.6) | EMAC CCM (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | 1.3 ± 0.3 * | 0.8 ± 0.3 * | 1.6 ± 0.2 * | 2.0 ± 0.3 * | 0.5 ± 0.8 |
7–30 hPa | −0.9 ± 0.3 * | −0.8 ± 0.3 * | −0.7 ± 0.3 | −0.4 ± 0.3 | 0.8 ± 0.7 |
30–100 hPa | −3.6 ± 0.6 * | −4.0 ± 0.6 * | −1.4 ± 0.5 * | −0.9 ± 0.8 | −2.1 ± 1.6 |
(d) Mauna Loa (19.5° N, 155.6° W) | |||||
Oslo CTM3 | SBUV (v8.6) | EMAC CCM (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | 0.8 ± 0.2 * | 0.4 ± 0.2 | 1.6 ± 0.2 * | 1.5 ± 0.2 * | −0.6 ± 0.3 |
7–30 hPa | −0.7 ± 0.3 | −0.7 ± 0.3 | −0.7 ± 0.3 | 0.0 ± 0.3 | −1.0 ± 0.4 |
30–100 hPa | −4.3 ± 0.8 * | −4.7 ± 0.8 * | −1.1 ± 0.4 | −1.1 ± 0.9 | −3.4 ± 0.8 * |
(e) Lauder (45.0° S, 169.7° E) | |||||
Oslo CTM3 | SBUV (v8.6) | EMAC CCM (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | −0.1 ± 0.3 | −0.5 ± 0.3 | 0.4 ± 0.2 | 0.5 ± 0.3 | 0.6 ± 0.5 |
7–30 hPa | −0.4 ± 0.3 | −0.3 ± 0.3 | 0.0 ± 0.4 | 0.4 ± 0.4 | 0.7 ± 0.7 |
30–100 hPa | −0.1 ± 0.5 | −0.5 ± 0.5 | −0.2 ± 0.4 | −1.1 ± 0.5 | 0.5 ± 0.9 |
(f) 5 Station Mean | |||||
Oslo CTM3 | SBUV (v8.6) | EMAC CCM (SC1SD_02) | Lidar | ||
Layer | FULL | HAL98 | |||
1–7 hPa | 0.9 ± 0.2 * | 0.4 ± 0.2 | 1.4 ± 0.2 * | 1.4 ± 0.2 * | 0.4 ± 0.2 |
7–30 hPa | −0.6 ± 0.2 * | −0.5 ± 0.2 | −0.2 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.3 |
30–100 hPa | −2.1 ± 0.3 * | −2.6 ± 0.3 * | −1.0 ± 0.3 * | −0.3 ± 0.4 | −1.3 ± 0.4 * |
(a) 1–7 hPa | Correlation Coefficient | Intercept (%) | Slope | Error * | t-Value | p-Value | N |
---|---|---|---|---|---|---|---|
CTM3 and SBUV | 0.78 | 0.002 | 0.700 | 0.038 | 18.500 | <0.0001 | 227 |
CTM3 and Lidar | 0.51 | −0.040 | 0.395 | 0.044 | 8.912 | <0.0001 | 225 |
CTM3 and CCM | 0.74 | 0.230 | 0.715 | 0.045 | 15.857 | <0.0001 | 204 |
CCM and SBUV | 0.72 | −0.251 | 0.682 | 0.047 | 14.571 | <0.0001 | 203 |
CCM and Lidar | 0.48 | −0.207 | 0.369 | 0.048 | 7.688 | <0.0001 | 201 |
SBUV and Lidar | 0.41 | −0.038 | 0.350 | 0.053 | 6.640 | <0.0001 | 224 |
(b) 7–30 hPa | |||||||
CTM3 and SBUV | 0.81 | 0.0007 | 0.706 | 0.034 | 20.560 | <0.0001 | 227 |
CTM3 and Lidar | 0.77 | 0.026 | 0.523 | 0.029 | 18.064 | <0.0001 | 225 |
CTM3 and CCM | 0.88 | 0.018 | 1.008 | 0.039 | 26.015 | <0.0001 | 204 |
CCM and SBUV | 0.81 | 0.016 | 0.643 | 0.033 | 19.707 | <0.0001 | 203 |
CCM and Lidar | 0.77 | −0.024 | 0.459 | 0.027 | 16.788 | <0.0001 | 201 |
SBUV and Lidar | 0.71 | 0.033 | 0.558 | 0.037 | 15.120 | <0.0001 | 224 |
(c) 30–100 hPa | |||||||
CTM3 and SBUV | 0.70 | 0.008 | 0.975 | 0.066 | 14.859 | <0.0001 | 227 |
CTM3 and Lidar | 0.55 | 0.179 | 0.501 | 0.051 | 9.834 | <0.0001 | 225 |
CTM3 and CCM | 0.62 | −0.155 | 0.706 | 0.063 | 11.129 | <0.0001 | 204 |
CCM and SBUV | 0.67 | 0.056 | 0.841 | 0.066 | 12.758 | <0.0001 | 203 |
CCM and Lidar | 0.55 | 0.142 | 0.450 | 0.049 | 9.255 | <0.0001 | 201 |
SBUV and Lidar | 0.62 | 0.131 | 0.407 | 0.035 | 11.673 | <0.0001 | 224 |
Total Ozone (SBUV v8.6) | Tropopause Pressure (NCEP) | |||||
---|---|---|---|---|---|---|
Trend (% dec−1) | t-Value | N | Trend (% dec−1) | t-Value | N | |
HHP | −0.16 ± 0.33 | −0.482 | 228 | −0.06 ± 0.67 | −0.089 | 228 |
OHP | −0.22 ± 0.32 | −0.696 | 228 | 0.65 ± 0.67 | 0.964 | 228 |
TMO | −0.42 ± 0.31 | −1.349 | 228 | −0.17 ± 0.79 | −0.211 | 228 |
MLO | −0.26 ± 0.28 | −0.954 | 228 | −0.46 ± 0.58 | −0.796 | 228 |
LAU | 0.15 ± 0.30 | 0.502 | 228 | 0.77 ± 0.62 | 1.247 | 228 |
Correlation Coefficients 1998–2016 | ||||
---|---|---|---|---|
(a) Upper Stratosphere (1-7 hPa) and Total Ozone Correlation | ||||
1–7 hPa (CTM3) | 1–7 hPa (SBUV) | |||
Total ozone (SBUV) | Total ozone (CTM3) | Total ozone (SBUV) | Total ozone (CTM3) | |
Hohenpeissenberg | 0.24 * | 0.28 * | 0.31 * | 0.31 * |
Haute Provence | 0.22 * | 0.23 * | 0.30 * | 0.28 * |
Table Mountain | 0.34 * | 0.19 | 0.33 * | 0.13 |
Mauna Loa | 0.15 | 0.09 | 0.14 | −0.04 |
Lauder | 0.04 | 0.04 | 0.28 * | 0.26 * |
(b) Middle Stratosphere (7–30 hPa) and Total Ozone Correlation | ||||
7–30 hPa (CTM3) | 7–30 hPa (SBUV) | |||
Total ozone (SBUV) | Total ozone (CTM3) | Total ozone (SBUV) | Total ozone (CTM3) | |
Hohenpeissenberg | 0.58 * | 0.65 * | 0.57 * | 0.57 * |
Haute Provence | 0.55 * | 0.64 * | 0.60 * | 0.60 * |
Table Mountain | 0.50 * | 0.59 * | 0.70 * | 0.64 * |
Mauna Loa | 0.67 * | 0.67 * | 0.89 * | 0.73 * |
Lauder | 0.65 * | 0.66 * | 0.75 * | 0.69 * |
(c) Lower Stratosphere (30–100 hPa) and Total Ozone Correlation | ||||
30–100 hPa (CTM3) | 30–100 hPa (SBUV) | |||
Total ozone (SBUV) | Total ozone (CTM3) | Total ozone (SBUV) | Total ozone (CTM3) | |
Hohenpeissenberg | 0.81 * | 0.87 * | 0.90 * | 0.75 * |
Haute Provence | 0.76 * | 0.86 * | 0.90 * | 0.72 * |
Table Mountain | 0.73 * | 0.88 * | 0.92 * | 0.77 * |
Mauna Loa | 0.53 * | 0.79 * | 0.85 * | 0.73 * |
Lauder | 0.66 * | 0.85 * | 0.91 * | 0.74 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleftheratos, K.; Kapsomenakis, J.; Zerefos, C.S.; Bais, A.F.; Fountoulakis, I.; Dameris, M.; Jöckel, P.; Haslerud, A.S.; Godin-Beekmann, S.; Steinbrecht, W.; et al. Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level. Atmosphere 2020, 11, 228. https://doi.org/10.3390/atmos11030228
Eleftheratos K, Kapsomenakis J, Zerefos CS, Bais AF, Fountoulakis I, Dameris M, Jöckel P, Haslerud AS, Godin-Beekmann S, Steinbrecht W, et al. Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level. Atmosphere. 2020; 11(3):228. https://doi.org/10.3390/atmos11030228
Chicago/Turabian StyleEleftheratos, Kostas, John Kapsomenakis, Christos S. Zerefos, Alkiviadis F. Bais, Ilias Fountoulakis, Martin Dameris, Patrick Jöckel, Amund S. Haslerud, Sophie Godin-Beekmann, Wolfgang Steinbrecht, and et al. 2020. "Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level" Atmosphere 11, no. 3: 228. https://doi.org/10.3390/atmos11030228
APA StyleEleftheratos, K., Kapsomenakis, J., Zerefos, C. S., Bais, A. F., Fountoulakis, I., Dameris, M., Jöckel, P., Haslerud, A. S., Godin-Beekmann, S., Steinbrecht, W., Petropavlovskikh, I., Brogniez, C., Leblanc, T., Liley, J. B., Querel, R., & Swart, D. P. J. (2020). Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level. Atmosphere, 11(3), 228. https://doi.org/10.3390/atmos11030228