Skill Assessment of an Atmosphere–Wave Regional Coupled Model over the East China Sea with a Focus on Typhoons
Abstract
:1. Introduction
2. Experimental Setup and Datasets
2.1. Model Description and Simulation Setups
2.1.1. Atmospheric Model-CCLM
2.1.2. Wave Model: WAM
2.1.3. Coupling between CCLM and WAM
2.2. Datasets and Methods
2.2.1. ERA5 Reanalysis
2.2.2. In-situ Observations
2.2.3. Satellite Data
2.3. Sea Surface Roughness Length Parameterizations
3. Validation
3.1. Model Assessment of 10 m Wind against Station Observations
3.2. Model Assessment of Significant Wave Height against Station Observations
3.3. Validation against Satellite Observations
4. Typhoon Events
5. Impact of Coupling on Mean and Extremes
6. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warner, J.C.; Armstrong, B.; Sylvester, C.S.; Voulgaris, G.; Nelson, T.; Schwab, W.C.; Denny, J.F. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina. Cont. Shelf Res. 2012, 42, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Pullen, J.; Caldeira, R.; Doyle, J.D.; May, P.; Tomé, R. Modeling the air-sea feedback system of Madeira Island. J. Adv. Modeling Earth Syst. 2017, 9, 1641–1664. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Voulgaris, G.; Warner, J.C.; Olabarrieta, M. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 2012, 47, 65–95. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.; Zambon, J.B.; He, R. Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2012, 43, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Zambon, J.B.; He, R.; Warner, J.C. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model. Ocean Dyn. 2014, 64, 1535–1554. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Pineau-Guillou, L.; Ardhuin, F.; Bouin, M.N.; Redelsperger, J.L.; Chapron, B.; Bidlot, J.R.; Quilfen, Y. Strong winds in a coupled wave–atmosphere model during a North Atlantic storm event: Evaluation against observations. Q. J. R. Meteorol. Soc. 2018, 144, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Fox-Kemper, B.; Hemer, M. Wind Waves in the Coupled Climate System. Bull. Am. Meteorol. Soc. 2012, 93, 1651–1661. [Google Scholar] [CrossRef]
- Janssen, P.A.; Breivik, Ø.; Mogensen, K.; Vitart, F.; Balmaseda, M.; Bidlot, J.-R.; Keeley, S.; Leutbecher, M.; Magnusson, L.; Molteni, F. Air-Sea Interaction and Surface Waves; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2013. [Google Scholar]
- Schrum, C. Regional Climate Modeling and Air-Sea Coupling. In Oxford Research Encyclopedia of Climate Science; von Storch, H., Ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Li, D.; von Storch, H.; Geyer, B. Testing reanalyses in constraining dynamical downscaling. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Zweers, N.; Makin, V.; De Vries, J.; Burgers, G. A sea drag relation for hurricane wind speeds. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Feser, F.; von Storch, H. A dynamical downscaling case study for typhoons in Southeast Asia using a regional climate model. Mon. Weather Rev. 2008, 136, 1806–1815. [Google Scholar] [CrossRef]
- Li, D.; von Storch, H.; Geyer, B. High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: Evaluation and wind climatology analysis. J. Geophys. Res. Atmos. 2016, 121, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Bertotti, L. Accuracy of the modelled wind and wave fields in enclosed seas. Tellus A Dyn. Meteorol. Oceanogr. 2004, 56, 167–175. [Google Scholar] [CrossRef]
- Van Vledder, G.P.; Akpınar, A. Wave model predictions in the Black Sea: Sensitivity to wind fields. Appl. Ocean Res. 2015, 53, 161–178. [Google Scholar] [CrossRef]
- Wiese, A.; Staneva, J.; Schulz-Stellenfleth, J.; Behrens, A.; Fenoglio-Marc, L.; Bidlot, J.-R. Synergy of wind wave model simulations and satellite observations during extreme events. Ocean Sci. 2018, 14, 1503–1521. [Google Scholar] [CrossRef] [Green Version]
- Pryor, S.; Hahmann, A.N. Downscaling Wind. In Oxford Research Encyclopedia of Climate Science; von Storch, H., Ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Cavaleri, L.; Bertotti, L. The improvement of modelled wind and wave fields with increasing resolution. Ocean Eng. 2006, 33, 553–565. [Google Scholar] [CrossRef]
- Du, J.; Bolaños, R.; Guo Larsén, X. The use of a wave boundary layer model in SWAN. J. Geophys. Res. Ocean. 2017, 122, 42–62. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Qiao, F.; Cavaleri, L.; Wang, G.; Bertotti, L.; Liu, L. Sensitivity of typhoon modeling to surface waves and rainfall. J. Geophys. Res. Ocean. 2017, 122, 1702–1723. [Google Scholar] [CrossRef]
- Rizza, U.; Canepa, E.; Ricchi, A.; Bonaldo, D.; Carniel, S.; Morichetti, M.; Passerini, G.; Santiloni, L.; Scremin Puhales, F.; Miglietta, M.M. Influence of wave state and sea spray on the roughness length: Feedback on medicanes. Atmosphere 2018, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Donelan, M.; Haus, B.K.; Reul, N.; Plant, W.; Stiassnie, M.; Graber, H.C.; Brown, O.; Saltzman, E. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Larsén, X.G.; Makin, V.K.; Smedman, A.-S. Impact of waves on the sea drag: Measurements in the Baltic Sea and a model interpretation. Glob. Atmos. Ocean Syst. 2003, 9, 97–120. [Google Scholar] [CrossRef]
- Toba, Y.; Iida, N.; Kawamura, H.; Ebuchi, N.; Jones, I.S. Wave dependence of sea-surface wind stress. J. Phys. Oceanogr. 1990, 20, 705–721. [Google Scholar] [CrossRef]
- Drennan, W.M.; Taylor, P.K.; Yelland, M.J. Parameterizing the sea surface roughness. J. Phys. Oceanogr. 2005, 35, 835–848. [Google Scholar] [CrossRef]
- Taylor, P.K.; Yelland, M.J. The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 2001, 31, 572–590. [Google Scholar] [CrossRef] [Green Version]
- Drennan, W.M.; Graber, H.C.; Hauser, D.; Quentin, C. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Hemer, M.A.; Wang, X.L.L.; Weisse, R.; Swail, V.R. Advancing Wind-Waves Climate Science The COWCLIP Project. Bull. Am. Meteorol. Soc. 2012, 93, 791–796. [Google Scholar] [CrossRef]
- Bruneau, N.; Toumi, R. A fully-coupled atmosphere-ocean-wave model of the Caspian Sea. Ocean Model. 2016, 107, 97–111. [Google Scholar] [CrossRef]
- Charles, E.; Hemer, M. Parameterization of a wave-dependent surface roughness: A step towards a fully coupled atmosphere-ocean-sea ice-wave system. In Proceedings of the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazard Symposium, Banff, AB, Canada, 27 October–1 November 2013. [Google Scholar]
- Fan, Y.; Lin, S.-J.; Held, I.M.; Yu, Z.; Tolman, H.L. Global ocean surface wave simulation using a coupled atmosphere-wave model. J. Clim. 2012, 25, 6233–6252. [Google Scholar] [CrossRef]
- Larsén, X.G.; Du, J.; Bolaños, R.; Imberger, M.; Kelly, M.C.; Badger, M.; Larsen, S. Estimation of offshore extreme wind from wind-wave coupled modeling. Wind Energy 2019. [Google Scholar] [CrossRef] [Green Version]
- Shimura, T.; Mori, N.; Takemi, T.; Mizuta, R. Long-term impacts of ocean wave-dependent roughness on global climate systems. J. Geophys. Res. Ocean. 2017, 122, 1995–2011. [Google Scholar] [CrossRef] [Green Version]
- Varlas, G.; Katsafados, P.; Papadopoulos, A.; Korres, G. Implementation of a two-way coupled atmosphere-ocean wave modeling system for assessing air-sea interaction over the Mediterranean Sea. Atmos. Res. 2018, 208, 201–217. [Google Scholar] [CrossRef]
- Wahle, K.; Staneva, J.; Koch, W.; Fenoglio-Marc, L.; Ho-Hageman, H.T.M.; Stanev, E.V. An atmosphere-wave regional coupled model: Improving predictions of wave heights and surface winds in the southern North Sea. Ocean Sci. 2017, 13, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.D. Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2002, 47, 766–778. [Google Scholar] [CrossRef]
- Lionello, P.; Malguzzi, P.; Buzzi, A. Coupling between the Atmospheric Circulation and the Ocean Wave Field: An Idealized Case. J. Phys. Oceanogr. 1998, 28, 161–177. [Google Scholar] [CrossRef]
- Bao, J.; Wilczak, J.; Choi, J.; Kantha, L. Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Weather Rev. 2000, 128, 2190–2210. [Google Scholar] [CrossRef]
- Katsafados, P.; Papadopoulos, A.; Korres, G.; Varlas, G. A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: Interactions and sensitivity to the resolved scales and mechanisms. Geosci. Model Dev. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 5–6. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM(CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Schättler, U.; Doms, G.; Schraff, C. A description of the nonhydrostatic regional COSMO-model part VII: User’s guide. Dtsch. Wetterd. Rep. COSMO-Model 2008, 4, 142. [Google Scholar]
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Li, D.L.; Yin, B.S.; Feng, J.L.; Dosio, A.; Geyer, B.; Qi, J.F.; Shi, H.Y.; Xu, Z.H. Present Climate Evaluation and Added Value Analysis of Dynamically Downscaled Simulations of CORDEX-East Asia. J. Appl. Meteorol. Clim. 2018, 57, 2317–2341. [Google Scholar] [CrossRef]
- Group, T.W. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Alari, V.; Breivik, O.; Bidlot, J.R.; Mogensen, K. Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynam 2017, 67, 81–101. [Google Scholar] [CrossRef]
- Hersbach, H.; Janssen, P. Improvement of the short-fetch behavior in the Wave Ocean Model (WAM). J. Atmos. Ocean. 1999, 16, 884–892. [Google Scholar] [CrossRef]
- Bidlot, J.; Janssen, P.; Abdalla, S.; Hersbach, H. A Revised Formulation of Ocean Wave Dissipation and Its Model Impact; ECMWF: Reading, UK, 2007. [Google Scholar]
- Gridded Bathymetry Data. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 22 January 2020).
- Valcke, S. The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- What Are the Changes from ERA-Interim to ERA5? Available online: https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925 (accessed on 2 March 2020).
- Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 1955, 81, 639–640. [Google Scholar] [CrossRef]
- Doms, G.; Förstner, J.; Heise, E.; Herzog, H.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P. A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Dtsch. Wetterd. Offenb. Ger. 2011, 1–161. [Google Scholar]
- Janssen, P.A. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- ECMWF. IFS Documentation CY45R1; ECMWF: Reading, UK, 2018. [Google Scholar]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Ocean. 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Global Hazards-September 2010. Available online: https://www.ncdc.noaa.gov/sotc/hazards/201009 (accessed on 22 January 2020).
- RSMC Best Track Data (Text). Available online: http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html (accessed on 22 January 2020).
- CMA Tropical Cyclone Data Center for the western North Pacific Basin. Available online: http://tcdata.typhoon.org.cn/en/zjljsjj_zlhq.html (accessed on 22 January 2020).
- Robusto, C.C. The cosine-haversine formula. Am. Math. Mon. 1957, 64, 38–40. [Google Scholar] [CrossRef]
- Feser, F.; von Storch, H. Regional modelling of the western Pacific typhoon season 2004. Meteorol. Z. 2008, 17, 519–528. [Google Scholar] [CrossRef]
- Kanada, S.; Wada, A. Sensitivity to horizontal resolution of the simulated intensifying rate and inner-core structure of typhoon Ida, an extremely intense typhoon. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; He, H.; Hu, X.; Wang, D.; Gao, C.; Song, J. Numerical Simulations of Typhoon Hagupit (2008) Using WRF. Weather Forecast. 2019, 34, 999–1015. [Google Scholar] [CrossRef]
- Mogensen, K.S.; Magnusson, L.; Bidlot, J.R. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Ocean. 2017, 122, 4392–4412. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Bonaldo, D.; Cioni, G.; Rizza, U.; Carniel, S. Multi-physics ensemble versus Atmosphere–Ocean coupled model simulations for a tropical-like cyclone in the Mediterranean Sea. Atmosphere 2019, 10, 202. [Google Scholar] [CrossRef] [Green Version]
Exp. Name | Full Name | Variable for Comparison | Boundary Conditions |
---|---|---|---|
CCLM | standalone CCLM simulation | Wind speed (ws) and direction (wdir) | ERA5 boundary data |
WAM_E | standalone WAM simulation driven by ERA5 winds | Significant wave height (swh), mean wave direction (mwd) | ERA5 winds, NW-Pacific WAM |
WAM_C | standalone WAM simulation driven by CCLM winds | swh, mwd | CCLM winds, NW-Pacific WAM |
CCLM-WAM | Coupled CCLM-WAM simulation | ws, wdir, swh, mwd | ERA5 boundary data, NW-Pacific WAM |
Station | Lon | Lat | Parameters | Height (m) | Water Depth (m) | Type |
---|---|---|---|---|---|---|
S1 | 122.75 | 38.76 | ws, wdir | 3 | 52 | buoy |
S2 | 123.013 | 39.067 | swh | 3 | 37.3 | buoy |
S6 | 123.135 | 30.715 | ws, wdir, swh | 10 | 61 | buoy |
S7 | 122.58 | 37.0625 | ws, wdir, swh | 3 | 30 | buoy |
IEODO | 125.184 | 32.12 | ws, wdir, swh, mwd | 43.5 | 41 | platform |
Simulation | < 4 m/s | 4–8 m/s | 8–12 m/s | > 12 m/s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIAS | MAE | RMSE | BIAS | MAE | RMSE | BIAS | MAE | RMSE | BIAS | MAE | RMSE | |
CCLM | 1.16 ± 0.10 | 1.78 ± 0.08 | 2.68 | − 0.3 ± 0.07 | 1.58 ± 0.05 | 2.04 | −0.78 ± 0.10 | 1.66 ± 0.07 | 2.24 | −1.33 ± 0.18 | 1.76 ± 0.15 | 2.71 |
CCLM-WAM | 0.79 ± 0.10 | 1.66 ± 0.08 | 2.50 | −0.67 ± 0.07 | 1.74 ± 0.05 | 2.18 | −1.11 ± 0.10 | 1.68 ± 0.08 | 2.31 | −2.04 ± 0.16 | 2.18 ± 0.15 | 3.04 |
ERA5 | 1.56 ± 0.10 | 1.94 ± 0.08 | 2.79 | 0.13 ± 0.06 | 1.18 ± 0.04 | 1.57 | −0.7 ± 0.07 | 1.19 ± 0.05 | 1.61 | −1.81 ± 0.14 | 1.88 ± 0.13 | 2.73 |
Exp. | S2 | S6 | S7 | IEODO | ||||
---|---|---|---|---|---|---|---|---|
BIAS (m) | MAE (m) | BIAS (m) | MAE (m) | BIAS (m) | MAE (m) | BIAS (m) | MAE (m) | |
WAM_E | 0.01 ± 0.004 | 0.14 ± 0.003 | −0.20 ± 0.013 | 0.28 ± 0.012 | −0.05 ± 0.006 | 0.15 ± 0.005 | −0.01 ± 0.008 | 0.25 ± 0.005 |
WAM_C | 0.04 ± 0.005 | 0.16 ± 0.003 | −0.14 ± 0.013 | 0.27 ± 0.012 | 0.01 ± 0.008 | 0.16 ± 0.006 | 0.07 ± 0.009 | 0.28 ± 0.007 |
CCLM-WAM | −0.02 ± 0.004 | 0.14 ± 0.003 | −0.21 ± 0.013 | 0.29 ± 0.012 | −0.04 ± 0.007 | 0.16 ± 0.005 | −0.01 ± 0.008 | 0.25 ± 0.005 |
ERA5 | 0.03 ± 0.005 | 0.16 ± 0.003 | −0.32 ± 0.013 | 0.35 ± 0.012 | 0.07 ± 0.008 | 0.17 ± 0.006 | 0.04 ± 0.007 | 0.24 ± 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Staneva, J.; Grayek, S.; Behrens, A.; Feng, J.; Yin, B. Skill Assessment of an Atmosphere–Wave Regional Coupled Model over the East China Sea with a Focus on Typhoons. Atmosphere 2020, 11, 252. https://doi.org/10.3390/atmos11030252
Li D, Staneva J, Grayek S, Behrens A, Feng J, Yin B. Skill Assessment of an Atmosphere–Wave Regional Coupled Model over the East China Sea with a Focus on Typhoons. Atmosphere. 2020; 11(3):252. https://doi.org/10.3390/atmos11030252
Chicago/Turabian StyleLi, Delei, Joanna Staneva, Sebastian Grayek, Arno Behrens, Jianlong Feng, and Baoshu Yin. 2020. "Skill Assessment of an Atmosphere–Wave Regional Coupled Model over the East China Sea with a Focus on Typhoons" Atmosphere 11, no. 3: 252. https://doi.org/10.3390/atmos11030252
APA StyleLi, D., Staneva, J., Grayek, S., Behrens, A., Feng, J., & Yin, B. (2020). Skill Assessment of an Atmosphere–Wave Regional Coupled Model over the East China Sea with a Focus on Typhoons. Atmosphere, 11(3), 252. https://doi.org/10.3390/atmos11030252