Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere
Abstract
:1. Introduction
2. Data and Data Processing Methods
2.1. Data
2.2. Calculation of the Potential Temperature, Thorpe Scale and the Altitude and Thickness of SMLT
2.3. Calculation of the Fluctuation Period and Amplitude
3. Comparison of Inversion Results of Two Types of Data
4. The Temporal and Spatial Distribution of SMLT
5. HHT of SMLT Altitude over Time
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Theuerkauf, A.; Gerding, M.; Lübken, F.J. LITOS—A new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere. Atmos. Meas. 2011, 4, 3455–3487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tian, W.; Xie, F.; Chipperfield, M.P.; Feng, W.; Son, S.W.; Abraham, N.L.; Archibald, A.T.; Bekki, S.; Butchart, N.; et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alisse, J.; Sidi, C. Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere. J. Fluid Mech. 2000, 402, 137–162. [Google Scholar] [CrossRef]
- Sheng, Z.; Jiang, Y.; Wan, L.; Fan, Z.Q. A study of atmospheric temperature and wind profiles obtained from rocketsondes in the chinese midlatitude region. J. Atmos. Ocean. Technol. 2015, 32, 722–735. [Google Scholar] [CrossRef]
- Wang, W.; Shangguan, M.; Tian, W.; Schmidt, T.; Ding, A. Large uncertainties in estimation of tropical tropopause temperature variabilities due to model vertical resolution. Geophys. Res. Lett. 2019, 46, 10043–10052. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sheng, Z.; Li, J.W.; Yu, H.; Wei, K.J. Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. Atmos. 2019, 124, 10592–10607. [Google Scholar] [CrossRef]
- Clayson, C.A.; Kantha, L. On Turbulence and Mixing in the Free Atmosphere Inferred from High-Resolution Soundings. J. Atmos. Ocean. Technol. 2008, 25, 833–852. [Google Scholar] [CrossRef]
- Chang, S.; Sheng, Z.; Du, H.; Ge, W.; Zhang, W. A channel selection method for hyperspectral atmospheric infrared sounders based on layering. Atmos. Meas. Tech. 2020, 13, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.; Zhang, J.; Tian, W.; Hu, Y.; Zhao, S.; Sun, C.; Ding, R.; Feng, J.; Yang, Y. Variations in north Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett. 2017, 12, 114023. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Sheng, Z.; He, M. Spectral Analysis of Gravity Waves from Near Space High-Resolution Balloon Data in Northwest China. Atmosphere 2020, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Sheng, Z.; He, M. The First Observation of Turbulence in Northwestern China by a Near-Space High-Resolution Balloon Sensor. Sensors 2020, 20, 677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohn, S.A. Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Ocean. Technol. 1995, 12, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.A.; Thomas, L. Complementary criteria for identifying regions of intense atmospheric turbulence using lower VHF radar. J. Atmos. Sol. Terr. Phys. 1998, 60, 49–61. [Google Scholar] [CrossRef]
- Thorpe, S.A. Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London 1977, 286, 125–181. [Google Scholar]
- Thorpe, S.A. The Turbulent Ocean; Cambridge University Press: Cambridge, UK, 2005; 439p. [Google Scholar]
- Balsley, B.B.; Kantha, L.; Colgan, W. On the Use of Slow Ascent Meter-Scale Sampling (SAMS) Radiosondes for Observing Overturning Events in the Free Atmosphere. J. Atmos. Ocean. Technol. 2009, 27, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Nath, D.; Ratnam, M.V.; Patra, A.K.; Murthy, B.V.K.; Rao, S.V.B. Turbulence characteristics over tropical station Gadanki (13.5°N, 79.2°E) estimated using high-resolution GPS radiosonde data. J. Geophys. Res. Atmos. 2010, 115, D07102. [Google Scholar]
- Kantha, L.; Hocking, W. Dissipation rates of turbulence kinetic energy in the free atmosphere: MST radar and radiosondes. J. Atmos. Sol. -Terr. Phys. 2010, 73, 1043–1051. [Google Scholar] [CrossRef]
- Wilson, R.; Dalaudier, F.; Luce, H. Can one detect small-scale turbulence from standard meteorological radiosondes? Atmos. Meas. Tech. 2012, 4, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Muhsin, M.; Sunilkumar, S.V.; Ratnam, M.V.; Parameswaran, K.; Murthy, B.V.K.; Ramkumar, G.; Rajeev, K. Diurnal variation of atmospheric stability and turbulence during different seasons in the troposphere and lower stratosphere derived from simultaneous radiosonde observations at two tropical stations, in the Indian Peninsula. Atmos. Res. 2016, 180, 12–23. [Google Scholar] [CrossRef]
- Luce, H.; Fukao, S.; Dalaudier, F.; Crochet, M. Strong Mixing Events Observed near the Tropopause with the MU Radar and High-Resolution Balloon Techniques. J. Atmos. Sci. 2002, 59, 2885–2896. [Google Scholar] [CrossRef]
- Wilson, R.; Luce, H.; Dalaudier, F.; Lefrère, J. Turbulence Patch Identification in Potential Density or Temperature Profiles. J. Atmos. Ocean. Technol. 2010, 27, 977–993. [Google Scholar] [CrossRef]
- Hwang, C.; Tseng, T.P.; Lin, T.; Svehla, D.; Schreiner, B. Precise orbit determination for the formosat-3/cosmic satellite mission using gps. J. Geod. 2009, 83, 477–489. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Sokolovskiy, S.; Anthes, R.; Andenberghe, F.V. Assimilation of gps radio occultation data for numerical weather prediction. Terr. Atmos. Ocean. Sci. 2010, 11, 157–186. [Google Scholar] [CrossRef] [Green Version]
- Rocken, C. Cosmic system description. Terr. Atmos. Ocean. Sci. 2011, 11, 21–52. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.Q.; Sheng, Z.; Shi, H.Q.; Yi, X.; Jiang, Y.; Zhu, E.Z. Comparative assessment of cosmic radio occultation data and timed/saber satellite data over china. J. Appl. Meteorol. Climatol. 2014, 54, 1931–1943. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wilson, R.; Luce, H.; Hashiguchi, H.; Shiotani, M. On the effect of moisture on the detection of tropospheric turbulence from in situ measurements. Atmos. Meas. Tech. 2013, 6, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Poore, K.D.; Wang, J.; Rossow, W.B. Cloud Layer Thicknesses from a Combination of Surface and Upper-Air Observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. Atmos. 2010, 115, D00K30. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Luce, H.; Crochet, M.; Dalaudier, F.; Fukao, S. Turbulence parameter estimations from highresolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys. 2005, 23, 2401–2413. [Google Scholar] [CrossRef] [Green Version]
- Strelnikov, B.; Szewczyk, A.; Strelnikova, I.; Latteck, R.; Baumgarten, G.; Lübken, F.J.; Rapp, M.; Fasoulas, S.; Löhle, S.; Eberhart, M.; et al. Spatial and temporal variability in mlt turbulence inferred from in situ and ground-based observations during the wadis-1 sounding rocket campaign. Ann. Geophys. 2017, 35, 547–565. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, Y.; Xue, M.; Zhu, K. Impacts of horizontal propagation of orographic gravity waves on the wave drag in the stratosphere and lower mesosphere. J. Geophys. Res. Atmos. 2017, 122, 11–301. [Google Scholar] [CrossRef]
(m) | Altitude (km) | Thickness (m) | |
---|---|---|---|
mean value of COSMIC | 468 | 7.73 | 940 |
mean value of balloon | 221 | 9.06 | 775 |
difference of the mean value | 256 | −1.33 | 165 |
Correlation coefficient | 0.57 | 0.56 | 0.63 |
Altitude (km) | Thickness (m) | (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | |
spring | 7.99 | 7.22 | 7.51 | 867 | 739 | 798 | 426 | 377 | 399 |
summer | 8.29 | 7.21 | 7.57 | 872 | 754 | 817 | 421 | 382 | 406 |
autumn | 8.03 | 7.17 | 7.50 | 862 | 736 | 799 | 425 | 375 | 399 |
winter | 7.94 | 7.22 | 7.45 | 891 | 712 | 800 | 431 | 363 | 399 |
average | 8.06 | 7.20 | 7.51 | 873 | 735 | 804 | 426 | 374 | 401 |
Altitude (km) | Thickness (m) | (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | |
spring | 9.59 | 5.57 | 7.52 | 895 | 540 | 789 | 444 | 287 | 394 |
summer | 9.77 | 5.65 | 7.65 | 882 | 554 | 812 | 436 | 287 | 404 |
autumn | 9.45 | 5.63 | 7.57 | 884 | 515 | 793 | 439 | 276 | 396 |
winter | 9.45 | 5.43 | 7.46 | 901 | 541 | 789 | 443 | 284 | 394 |
average | 9.57 | 5.57 | 7.55 | 891 | 538 | 796 | 440 | 283 | 397 |
IMF | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 |
---|---|---|---|---|---|---|---|---|---|---|
frequency (Hz) | 0.3105 | 0.1393 | 0.0658 | 0.0286 | 0.0116 | 0.0028 | 0.0024 | 0.0007 | 0.0004 | 0.0003 |
period (d) | 3 | 7 | 15 | 35 | 86 | 358 | 422 | 1510 | 2551 | 3320 |
amplitude (m) | 11 | 8 | 10 | 20 | 75 | 535 | 90 | 29 | 38 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Z.; Zhou, L.; He, Y. Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere. Atmosphere 2020, 11, 264. https://doi.org/10.3390/atmos11030264
Sheng Z, Zhou L, He Y. Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere. Atmosphere. 2020; 11(3):264. https://doi.org/10.3390/atmos11030264
Chicago/Turabian StyleSheng, Zheng, Lesong Zhou, and Yang He. 2020. "Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere" Atmosphere 11, no. 3: 264. https://doi.org/10.3390/atmos11030264
APA StyleSheng, Z., Zhou, L., & He, Y. (2020). Retrieval and Analysis of the Strongest Mixed Layer in the Troposphere. Atmosphere, 11(3), 264. https://doi.org/10.3390/atmos11030264