Influence of the Background Nitrogen Oxides on the Tropospheric Ozone Depletion Events in the Arctic during Springtime
Abstract
:1. Introduction
1.1. Discovery of ODEs
1.2. Role of Nitrogen Oxides in ODEs
2. Mathematical Model and Methods
3. Results and Discussion
3.1. Temporal Evolution of Ozone and Principal Bromine Species
3.2. Temporal Evolution of Nitrogen Oxides
3.3. Influence of the NOx Initial Concentration
3.4. Concentration Sensitivity Analysis of Ozone and Bromine Containing Compounds during the ODEs
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Reaction Number | Reaction | k | Reference |
---|---|---|---|
(R1) | O3 + hO(1D) + O2 | Lehrer et al. [18] | |
(R2) | O(1D) + O2→O3 | Atkinson et al. [64] | |
(R3) | O(1D) + N2→O3 + N2 | Atkinson et al. [64] | |
(R4) | O(1D) + H2O→2OH | Atkinson et al. [64] | |
(R5) | Br + O3→BrO + O2 | Atkinson et al. [64] | |
(R6) | Br2 + h2Br | Lehrer et al. [18] | |
(R7) | BrO + h Br + O3 | Lehrer et al. [18] | |
(R8) | BrO + BrO→2Br + O2 | Atkinson et al. [64] | |
(R9) | BrO + BrO→Br2 + O2 | Atkinson et al. [64] | |
(R10) | BrO + HO2→HOBr + O2 | Atkinson et al. [64] | |
(R11) | HOBr + hBr + OH | Lehrer et al. [18] | |
(R12) | CO + OH(+M) HO2 + CO2(+M) | Atkinson et al. [64] | |
(R13) | Br + HO2→HBr + O2 | Atkinson et al. [64] | |
(R14) | HOBr + HBr Br2 + H2O | Cao et al. [44] | |
(R15) | HOBr + H+ +Br− Br2 + H2O | Cao et al. [44] | |
(R16) | Br + HCHO HBr + CO + HO2 | Lehrer et al. [18] | |
(R17) | Br + CH3CHO HBr + CH3CO3 | Atkinson et al. [64] | |
(R18) | Br2 + OH→HOBr + Br | Atkinson et al. [64] | |
(R19) | HBr + OH→H2O + Br | Atkinson et al. [64] | |
(R20) | Br + C2H2 2CO + 2HO2 + Br | Borken [65] | |
(R21) | Br + C2H2 2CO + HO2 + HBr | Borken [65] | |
(R22) | Br + C2H4 2CO + 2HO2 + Br +H2O | Barnes et al. [66] | |
(R23) | Br + C2H4 2CO + HO2 + HBr + H2O | Barnes et al. [66] | |
(R24) | CH4 + OH CH3O2 + H2O | Atkinson et al. [64] | |
(R25) | BrO + CH3O2→Br + HCHO + HO2 | Aranda et al. [67] | |
(R26) | BrO + CH3O2→HOBr + HCHO + 0.5O2 | Aranda et al. [67] | |
(R27) | OH + O3→HO2 + O2 | Atkinson et al. [64] | |
(R28) | OH + HO2→H2O + O2 | Atkinson et al. [64] | |
(R29) | OH + H2O2→HO2 + H2O | Atkinson et al. [64] | |
(R30) | OH + OH H2O + O3 | Atkinson et al. [64] | |
(R31) | HO2 + O3→OH + 2O2 | Atkinson et al. [64] | |
(R32) | HO2 + HO2→O2 + H2O2 | Atkinson et al. [64] | |
(R33) | C2H6 + OH→C2H5 + H2O | Atkinson et al. [64] | |
(R34) | C2H5 + O2→C2H4 + HO2 | Atkinson et al. [64] | |
(R35) | C2H5 + O2(+M)→C2H5O2(+M) | Atkinson et al. [64] | |
(R36) | C2H4 + OH(+M) CH3O2 + CO + H2O(+M) | Atkinson et al. [64] | |
(R37) | C2H4 + O3→HCHO + CO + H2O | Sander et al. [68] | |
(R38) | C2H2 + OH(+M) HCHO + CO + HO2(+M) | Atkinson et al. [64] | |
(R39) | C3H8 + OH C2H5O2 + CO + 2H2O | Atkinson et al. [64] | |
(R40) | HCHO + OH CO + H2O + HO2 | Atkinson et al. [64] | |
(R41) | CH3CHO + OH CH3CO3 + H2O | Atkinson et al. [64] | |
(R42) | CH3O2 + HO2→CH3O2H + O2 | Atkinson et al. [64] | |
(R43) | CH3O2 + HO2→HCHO +H2O + O2 | Atkinson et al. [64] | |
(R44) | CH3OOH + OH→CH3O2 + H2O | Atkinson et al. [64] | |
(R45) | CH3OOH + OH→HCHO + OH + H2O | Atkinson et al. [64] | |
(R46) | CH3OOH + Br→CH3O2 + HBr | Mallard et al. [69] | |
(R47) | CH3O2 + CH3O2→CH3OH + HCHO + O2 | Atkinson et al. [64] | |
(R48) | CH3O2 + CH3O2 2HCHO + 2HO2 | Atkinson et al. [64] | |
(R49) | CH3OH + OH HCHO + HO2 + H2O | Atkinson et al. [64] | |
(R50) | C2H5O2 + C2H5O2→C2H5O + C2H5O + O2 | Atkinson et al. [64] | |
(R51) | C2H5O + O2→CH3CHO + HO2 | Sander et al. [68] | |
(R52) | C2H5O + O2→CH3O2 + HCHO | Sander et al. [68] | |
(R53) | C2H5O2 + HO2→C2H5OOH + O2 | Atkinson et al. [64] | |
(R54) | C2H5OOH + OH→C2H5O2 + H2O | Sander et al. [68] | |
(R55) | C2H5OOH + Br→C2H5O2 + HBr | Sander et al. [68] | |
(R56) | OH + OH(+M) ⟶ H2O2(+M) | Atkinson et al. [64] | |
(R57) | H2O2 + h2OH | Lehrer et al. [18] | |
(R58) | HCHO + h 2HO2 + CO | Lehrer et al. [18] | |
(R59) | HCHO + hH2 + CO | Lehrer et al. [18] | |
(R60) | C2H4O + hCH3O2 + CO + + HO2 | Lehrer et al. [18] | |
(R61) | CH3O2H + hOH +HCHO + HO2 | Lehrer et al. [18] | |
(R62) | C2H5O2H + hC2H5O +OH | Lehrer et al. [18] | |
(R63) | NO + O3→NO2 + O2 | Atkinson et al. [64] | |
(R64) | NO + HO2→NO2 + OH | Atkinson et al. [64] | |
(R65) | NO2 + O3→NO3 + O2 | Atkinson et al. [64] | |
(R66) | NO2 + OH(+M)→HNO3(+M) | Atkinson et al. [64] | |
(R67) | NO + NO3→2NO2 | Atkinson et al. [64] | |
(R68) | HONO + OH→NO2 + H2O | Atkinson et al. [64] | |
(R69) | HO2 + NO2(+M)→HNO4(+M) | Atkinson et al. [64] | |
(R70) | HNO4(+M)→NO2 + HO2(+M) | Atkinson et al. [64] | |
(R71) | HNO4 + OH→NO2 + H2O + O2 | Atkinson et al. [64] | |
(R72) | NO + OH(+M)→HONO(+M) | Atkinson et al. [64] | |
(R73) | OH + NO3→NO2 + HO2 | Atkinson et al. [64] | |
(R74) | HNO3 + hNO2 + OH | Lehrer et al. [18] | |
(R75) | NO2 + h NO + O3 | Lehrer et al. [18] | |
(R76) | NO3 + h NO2 + O3 | Lehrer et al. [18] | |
(R77) | NO3 + hNO + O2 | Lehrer et al. [18] | |
(R78) | NO + CH3O2 HCHO + HO2 + NO2 | Atkinson et al. [64] | |
(R79) | NO3 + CH3OH HCHO + HO2 + HNO3 | Atkinson et al. [64] | |
(R80) | NO3 + HCHO CO + HO2 + HNO3 | Atkinson et al. [64] | |
(R81) | NO + C2H5O2 CH3CHO + NO2 + HO2 | Atkinson et al. [64] | |
(R82) | NO + CH3CO3 CH3O2 + NO2 + CO2 | Atkinson et al. [64] | |
(R83) | NO2 + CH3CO3(+M)→PAN(+M) | Atkinson et al. [64] | |
(R84) | Br + NO2(+M)→BrNO2(+M) | Atkinson et al. [64] | |
(R85) | Br + NO3→BrO + NO2 | Atkinson et al. [64] | |
(R86) | BrO + NO2(+M)→BrONO2(+M) | Atkinson et al. [64] | |
(R87) | BrO + NO→Br + NO2 | Atkinson et al. [64] | |
(R88) | BrONO2 + hNO2 + BrO | Lehrer et al. [18] | |
(R89) | BrNO2 + hNO2 + Br | Lehrer et al. [18] | |
(R90) | BrONO2 + H2O HOBr + HNO3 | Cao et al. [44] | |
(R91) | PAN + hNO2 + CH3CO3 | Fishman and Carney [70] | |
(R92) | BrONO2 + H2O HOBr + HNO3 | Cao et al. [44] | |
(R93) | CH3O2H + Cl→CH3O2 + HCl | Atkinson et al. [64] | |
(R94) | C2H5O2H + Cl→C2H5O2 + HCl | Atkinson et al. [64] | |
(R95) | Cl + HO2→HCl + O2 | Atkinson et al. [64] | |
(R96) | Cl + HO2→ClO + HO | Atkinson et al. [64] | |
(R97) | Cl + H2O2→HCl + HO2 | Atkinson et al. [64] | |
(R98) | Cl + O3→ClO + O2 | Atkinson et al. [64] | |
(R99) | Cl + CH4→HCl + CH3O2 | Atkinson et al. [64] | |
(R100) | Cl + C2H2→2CO + 2HO2+ Cl | Borken [65] | |
(R101) | Cl + C2H4→2CO + HO2 + HCl | Borken [65] | |
(R102) | Cl + C2H4→2CO + 2HO2 + Cl + H2O | Atkinson et al. [64] | |
(R103) | Cl + C2H4→2CO + HO2 + HCl + H2O | Atkinson et al. [64] | |
(R104) | Cl + C2H6→C2H5 + HCl | Atkinson et al. [64] | |
(R105) | Cl + C3H8→C2H5O2 + HCl + H2O + CO2 | Atkinson et al. [64] | |
(R106) | Cl + CH2O→HCl+ CO + HO2 | Atkinson et al. [64] | |
(R107) | Cl + C2H4O→CH3CO3 + HCl | Atkinson et al. [64] | |
(R108) | HO + Cl2→HOCl + Cl | Atkinson et al. [64] | |
(R109) | HO + HCl→Cl + H2O | Atkinson et al. [64] | |
(R110) | HO + HOCl→ClO + H2O | Atkinson et al. [64] | |
(R111) | HO + ClO→Cl + HO2 | Atkinson et al. [64] | |
(R112) | HO + ClO→HCl + O2 | Atkinson et al. [64] | |
(R113) | 2ClO→Cl2 + O2 | Atkinson et al. [64] | |
(R114) | 2ClO→2Cl + O2 | Atkinson et al. [64] | |
(R115) | 2ClO→Cl + OClO | Atkinson et al. [64] | |
(R116) | 2ClO→Cl2O2 | Atkinson et al. [64] | |
(R117) | Cl2O2→2ClO | Atkinson et al. [64] | |
(R118) | ClO + HO2→HOCl + O2 | Atkinson et al. [64] | |
(R119) | ClO + CH3O2→Cl + CH2O + HO2 | Atkinson et al. [64] | |
(R120) | ClO + NO→Cl + NO2 | Atkinson et al. [64] | |
(R121) | ClO + NO2→ClONO2 | Atkinson et al. [64] | |
(R122) | Cl + ClONO2→Cl2 + NO3 | Atkinson et al. [64] | |
(R123) | OClO + NO→NO2 + ClO | Atkinson et al. [64] | |
(R124) | HO + ClONO2→HOCl + NO3 | Atkinson et al. [64] | |
(R125) | ClO + BrO→Br + OClO | Atkinson et al. [64] | |
(R126) | ClO + BrO→Br + Cl + O2 | Atkinson et al. [64] | |
(R127) | ClO + BrO→BrCl + O2 | Atkinson et al. [64] | |
(R128) | Br + OClO→BrO + ClO | Atkinson et al. [64] | |
(R129) | Br + Cl2O2→BrCl + ClOO | Atkinson et al. [64] | |
(R130) | Br2 + Cl→BrCl + Br | Sander and Crutzen [53] | |
(R131) | BrCl + Br→Br2 + Cl | Sander and Crutzen [53] | |
(R132) | Br + Cl2→BrCl + Cl | Sander and Crutzen [53] | |
(R133) | BrCl + Cl→Br + Cl2 | Sander and Crutzen [53] | |
(R134) | HOBr→BrCl + H2O | Atkinson et al. [64] | |
(R135) | BrCl + hBr + Cl | Röth [71] | |
(R136) | Cl2 + hCl | Röth [71] | |
(R137) | ClO + hCl + O3 | Röth [71] | |
(R138) | HOCl + hHO + Cl | Röth [71] | |
(R139) | ClONO2 + hNO3 + Cl | Röth [71] | |
(R140) | OClO + hO3 + ClO | Röth [71] | |
(R141) | HOBr + HCl→BrCl + H2O | Atkinson et al. [64] |
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Akimoto, H. Atmospheric Reaction Chemistry; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Zhang, Z.; Rao, J.; Guo, D.; Zhang, W.; Li, L.; Tang, Z.; Shi, C.; Su, Y.; Zhang, F. Interdecadal Variations of the Midlatitude Ozone Valleys in Summer. Atmosphere 2019, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Chen, Y.; Rao, J.; Liu, S.; Li, S.; Ma, M.; Wang, Y. Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses. Atmosphere 2019, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Y.; Rao, J.; Cao, C.; Li, S.; Ma, M.; Wang, Y. Parallel Comparison of Major Sudden Stratospheric Warming Events in CESM1-WACCM and CESM2-WACCM. Atmosphere 2019, 10, 679. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, M. Health effects of tropospheric ozone. Environ. Sci. Technol. 1991, 25, 1954–1962. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.; Pitts, J., Jr. Atmospheric chemistry of tropospheric ozone formation: Scientific and regulatory implications. Air Waste 1993, 43, 1091–1100. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276, 1045–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Gao, M.; Li, S.; Yi, Z.; Meng, X. Sensitivity analysis of the dependence of the Carbon Bond Mechanism IV (CBM-IV) on the initial air composition under an urban condition. Atmos. Environ. 2019, 215, 116860. [Google Scholar] [CrossRef]
- Cao, L.; Li, S.; Yi, Z.; Gao, M. Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis. Molecules 2019, 24, 2463. [Google Scholar] [CrossRef] [Green Version]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Simpson, W.R.; von Glasow, R.; Riedel, K.; Anderson, P.; Ariya, P.; Bottenheim, J.; Burrows, J.; Carpenter, L.J.; Frieß, U.; Goodsite, M.E.; et al. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 2007, 7, 4375–4418. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.E.; Anderson, P.S.; Wolff, E.W.; Roscoe, H.K.; Marshall, G.J.; Richter, A.; Brough, N.; Colwell, S.R. Vertical structure of Antarctic tropospheric ozone depletion events: Characteristics and broader implications. Atmos. Chem. Phys. 2010, 10, 7775–7794. [Google Scholar] [CrossRef] [Green Version]
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Bottenheim, J.; Gallant, A.; Brice, K. Measurements of NOY species and O3 at 82° N latitude. Geophys. Res. Lett. 1986, 13, 113–116. [Google Scholar] [CrossRef]
- Kreher, K.; Johnston, P.V.; Wood, S.W.; Nardi, B.; Platt, U. Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights, Antarctica. Geophys. Res. Lett. 1997, 24, 3021–3024. [Google Scholar] [CrossRef]
- Lehrer, E.; Hönninger, G.; Platt, U. A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere. Atmos. Chem. Phys. 2004, 4, 2427–2440. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.H.; Wang, Y.; Jiang, T.; Deng, Y.; Oltmans, S.J.; Solberg, S. Influence of climate variability on near-surface ozone depletion events in the Arctic spring. Geophys. Res. Lett. 2014, 41, 2582–2589. [Google Scholar] [CrossRef]
- Steffen, A.; Douglas, T.A.; Amyot, M.; Ariya, P.A.; Aspmo, K.; Berg, T.; Bottenheim, J.W.; Brooks, S.; Cobbett, F.; Dastoor, A.; et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 2008, 8, 1445–1482. [Google Scholar] [CrossRef] [Green Version]
- Oltmans, S.J. Surface ozone measurements in clean air. J. Geophys. Res. Oceans 1981, 86, 1174–1180. [Google Scholar] [CrossRef]
- Hönninger, G.; Platt, U. Observations of BrO and its vertical distribution during surface ozone depletion at Alert. Atmos. Environ. 2002, 36, 2481–2489. [Google Scholar] [CrossRef]
- Platt, U.; Janssen, C. Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere. Faraday Discuss. 1995, 100, 175–198. [Google Scholar] [CrossRef]
- Platt, U.; Lehrer, E. Arctic Tropospheric Ozone Chemistry, ARCTOC; Number 64 in Air Pollution Research Report; European Commission Directorate-General, Science, Research and Development: Luxembourg, 1997. [Google Scholar]
- Wennberg, P. Atmospheric chemistry: Bromine explosion. Nature 1999, 397, 299–301. [Google Scholar] [CrossRef]
- Tarasick, D.W.; Bottenheim, J.W. Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2002, 2, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Bottenheim, J.W.; Netcheva, S.; Morin, S.; Nghiem, S.V. Ozone in the boundary layer air over the Arctic Ocean: Measurements during the TARA transpolar drift 2006–2008. Atmos. Chem. Phys. 2009, 9, 4545–4557. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, H.W.; Morin, S.; Bottenheim, J.W. Observation of widespread depletion of ozone in the springtime boundary layer of the central Arctic linked to mesoscale synoptic conditions. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.H.; Wang, Y.; Kurosu, T.P.; Chance, K.; Rozanov, A.; Richter, A.; Oltmans, S.J.; Thompson, A.M.; Hair, J.W.; Fenn, M.A.; et al. Characteristics of tropospheric ozone depletion events in the Arctic spring: Analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmos. Chem. Phys. 2012, 12, 9909–9922. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Walmsley, J.; Barrie, L.; Hopper, J. Mechanisms for surface ozone depletion and recovery during polar sunrise. Atmos. Environ. 1997, 31, 969–981. [Google Scholar] [CrossRef]
- Strong, C.; Fuentes, J.D.; Davis, R.E.; Bottenheim, J.W. Thermodynamic attributes of Arctic boundary layer ozone depletion. Atmos. Environ. 2002, 36, 2641–2652. [Google Scholar] [CrossRef]
- Piot, M.; von Glasow, R. The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events. Atmos. Chem. Phys. 2008, 8, 2437–2467. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Zhang, F.; Yu, G.; Fuentes, J.D.; Wu, L. Contribution of mixed-phase boundary layer clouds to the termination of ozone depletion events in the Arctic. Geophys. Res. Lett. 2011, 38, L21801. [Google Scholar] [CrossRef] [Green Version]
- Honrath, R.E.; Guo, S.; Peterson, M.C.; Dziobak, M.P.; Dibb, J.E.; Arsenault, M. Photochemical production of gas phase NOx from ice crystal NO3. J. Geophys. Res. 2000, 105, 24183–24190. [Google Scholar] [CrossRef]
- Muthuramu, K.; Shepson, P.B.; Bottenheim, J.W.; Jobson, B.T.; Niki, H.; Anlauf, K.G. Relationships between organic nitrates and surface ozone destruction during Polar Sunrise Experiment 1992. J. Geophys. Res. 1994, 99, 25369–25378. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- McConnell, J.C.; Henderson, G.S.; Barrie, L.; Bottenheim, J.; Niki, H.; Langford, C.H.; Templeton, E.M.J. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 1992, 355, 150–152. [Google Scholar] [CrossRef]
- Fan, S.M.; Jacob, D.J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. Nature 1992, 359, 522–524. [Google Scholar] [CrossRef]
- Beine, H.J.; Jaffe, D.A.; Stordal, F.; Engardt, M.; Solberg, S.; Schmidbauer, N.; Holmen, K. NOx during ozone depletion events in the arctic troposphere at Ny-Ålesund, Svalbard. Tellus B 1997, 49, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.J.; Jacob, D.J.; Atlas, E.; Cantrell, C.A.; Eisele, F.; Flocke, F.; Fried, A.; Mauldin, R.L.; Ridley, B.A.; Wert, B.; et al. Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the Arctic boundary layer. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Bloss, W.J.; Camredon, M.; Lee, J.D.; Heard, D.E.; Plane, J.M.C.; Saiz-Lopez, A.; Bauguitte, S.J.B.; Salmon, R.A.; Jones, A.E. Coupling of HOx, NOx and halogen chemistry in the antarctic boundary layer. Atmos. Chem. Phys. 2010, 10, 10187–10209. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Trainer, M.; Liu, S.C. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. 1988, 93, 15879–15888. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Trainer, M.; Fehsenfeld, F.C.; Parrish, D.D.; Williams, E.J.; Fahey, D.W.; Hubler, G.; Murphy, P.C. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. 1987, 92, 4191–4207. [Google Scholar] [CrossRef]
- Cao, L.; Sihler, H.; Platt, U.; Gutheil, E. Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere. Atmos. Chem. Phys. 2014, 14, 3771–3787. [Google Scholar] [CrossRef] [Green Version]
- Custard, K.D.; Thompson, C.R.; Pratt, K.A.; Shepson, P.B.; Liao, J.; Huey, L.G.; Orlando, J.J.; Weinheimer, A.J.; Apel, E.; Hall, S.R.; et al. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer. Atmos. Chem. Phys. 2015, 15, 10799–10809. [Google Scholar] [CrossRef] [Green Version]
- Turanyi, T. KINAL—A program package for kinetic analysis of reaction mechanisms. Comput. Chem. 1990, 14, 253–254. [Google Scholar] [CrossRef]
- Jones, A.E.; Weller, R.; Wolff, E.W.; Jacobi, H.W. Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys. Res. Lett. 2000, 27, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.E.; Weller, R.; Anderson, P.S.; Jacobi, H.W.; Wolff, E.W.; Schrems, O.; Miller, H. Measurements of NOx emissions from the Antarctic snowpack. Geophys. Res. Lett. 2001, 28, 1499–1502. [Google Scholar] [CrossRef] [Green Version]
- Grannas, A.M.; Jones, A.E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H.J.; Bergin, M.; Bottenheim, J.; Boxe, C.S.; Carver, G.; et al. An overview of snow photochemistry: Evidence, mechanisms and impacts. Atmos. Chem. Phys. 2007, 7, 4329–4373. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, H.W.; Frey, M.M.; Hutterli, M.A.; Bales, R.C.; Schrems, O.; Cullen, N.J.; Steffen, K.; Koehler, C. Measurements of hydrogen peroxide and formaldehyde exchange between the atmosphere and surface snow at Summit, Greenland. Atmos. Environ. 2002, 36, 2619–2628. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Platt, U.; Gutheil, E. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring. Atmos. Environ. 2016, 132, 98–110. [Google Scholar] [CrossRef]
- Schwartz, S. Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds. In Chemistry of Multiphase Atmospheric Systems; Jaeschke, W., Ed.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1986; Volume 6, pp. 415–471. [Google Scholar]
- Sander, R.; Crutzen, P.J. Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res. Atmos. 1996, 101, 9121–9138. [Google Scholar] [CrossRef]
- Hanson, D.R.; Ravishankara, A.R.; Solomon, S. Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations. J. Geophys. Res. Atmos. 1994, 99, 3615–3629. [Google Scholar] [CrossRef]
- Staebler, R.; Toom-Sauntry, D.; Barrie, L.; Langendörfer, U.; Lehrer, E.; Li, S.M.; Dryfhout-Clark, H. Physical and chemical characteristics of aerosols at Spitsbergen in the spring of 1996. J. Geophys. Res. Atmos. 1999, 104, 5515–5529. [Google Scholar] [CrossRef]
- Beare, R.; Macvean, M.; Holtslag, A.; Cuxart, J.; Esau, I.; Golaz, J.C.; Jimenez, M.; Khairoutdinov, M.; Kosovic, B.; Lewellen, D.; et al. An intercomparison of large-eddy simulations of the stable boundary layer. Bound. Layer Meteorol. 2006, 118, 247–272. [Google Scholar] [CrossRef] [Green Version]
- Huff, A.K.; Abbatt, J.P.D. Kinetics and product yields in the heterogeneous reactions of HOBr with ice surfaces containing NaBr and NaCl. J. Phys. Chem. A 2002, 106, 5279–5287. [Google Scholar] [CrossRef]
- Valko, P.; Vajda, S. An extended ode solver for sensitivity calculations. Comput. Chem. 1984, 8, 255–271. [Google Scholar] [CrossRef]
- Turányi, T. Sensitivity analysis of complex kinetic systems. Tools and applications. J. Math. Chem. 1990, 5, 203–248. [Google Scholar] [CrossRef]
- Liao, J.; Huey, L.G.; Tanner, D.J.; Flocke, F.M.; Orlando, J.J.; Neuman, J.A.; Nowak, J.B.; Weinheimer, A.J.; Hall, S.R.; Smith, J.N.; et al. Observations of inorganic bromine (HOBr, BrO, and Br2) speciation at Barrow, Alaska, in spring 2009. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Langendörfer, U.; Lehrer, E.; Wagenbach, D.; Platt, U. Observation of filterable bromine variabilities during arctic tropospheric ozone depletion events in high (1 hour) time resolution. J. Atmos. Chem. 1999, 34, 39–54. [Google Scholar] [CrossRef]
- Tas, E.; Peleg, M.; Pedersen, D.U.; Matveev, V.; Biazar, A.P.; Luria, M. Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer-Part 2: The influence of NO2 on bromine chemistry at mid-latitude areas. Atmos. Chem. Phys. 2008, 8, 4811–4821. [Google Scholar] [CrossRef] [Green Version]
- Tas, E.; Peleg, M.; Pedersen, D.U.; Matveev, V.; Pour Biazar, A.; Luria, M. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea. Atmos. Chem. Phys. 2006, 6, 5589–5604. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Kerr, J.A.; Rossi, M.; Troe, J. Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Technical Report. 2006. Available online: http://www.iupac-kinetic.ch.cam.ac.uk/ (accessed on 26 November 2019).
- Borken, J. Ozonabbau durch Halogene in der arktischen Grenzschicht. Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 1996. [Google Scholar]
- Barnes, I.; Becker, K.; Overath, R. Oxidation of Organic Sulfur Compounds. In The Tropospheric Chemistry of Ozone in the Polar Regions; Niki, H., Becker, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 7, pp. 371–383. [Google Scholar]
- Aranda, A.; Le Bras, G.; La Verdet, G.; Poulet, G. The BrO + Ch3O2 reaction: Kinetics and role in the atmospheric ozone budget. Geophys. Res. Lett. 1997, 24, 2745–2748. [Google Scholar] [CrossRef]
- Sander, R.; Vogt, R.; Harris, G.W.; Crutzen, P.J. Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring. Tellus B 1997, 49, 522–532. [Google Scholar] [CrossRef]
- Mallard, W.G.; Westley, F.; Herron, J.T.; Hampson, R.F.; Frizzel, D.H. NIST Chemical Kinetics Database: Version 5.0; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1993. [Google Scholar]
- Fishman, J.; Carney, T.A. A one-dimensional photochemical model of the troposphere with planetary boundary-layer parameterization. J. Atmos. Chem. 1984, 1, 351–376. [Google Scholar] [CrossRef]
- Röth, E.P. Description of the Anisotropic Radiation Transfer Model ART to Determine Photodissociation Coefficients; Number JUEL-3960 in Berichte des Forschungszentrums Jülich; Forschungszentrum, Zentralbibliothek: Jülich, Germany, 2002. [Google Scholar]
Species | Mixing Ratio | Species | Mixing Ratio |
---|---|---|---|
O3 | 40 ppb | C2H2 | 0.6 ppb |
H2O | 800 ppm | C3H8 | 1.2 ppb |
CO | 132 ppb | NO | 5 ppt |
CO2 | 371 ppm | NO2 | 10 ppt |
CH4 | 1.9 ppm | Br2 | 0.3 ppt |
HCHO | 0.1 ppb | HBr | 0.01 ppt |
CH3CHO | 0.1 ppb | Cl2 | 0.3 ppt |
C2H6 | 2.5 ppb | HCl | 0.01 ppt |
C2H4 | 0.1 ppb |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Cao, L.; Li, S. Influence of the Background Nitrogen Oxides on the Tropospheric Ozone Depletion Events in the Arctic during Springtime. Atmosphere 2020, 11, 344. https://doi.org/10.3390/atmos11040344
Zhou J, Cao L, Li S. Influence of the Background Nitrogen Oxides on the Tropospheric Ozone Depletion Events in the Arctic during Springtime. Atmosphere. 2020; 11(4):344. https://doi.org/10.3390/atmos11040344
Chicago/Turabian StyleZhou, Jiashu, Le Cao, and Simeng Li. 2020. "Influence of the Background Nitrogen Oxides on the Tropospheric Ozone Depletion Events in the Arctic during Springtime" Atmosphere 11, no. 4: 344. https://doi.org/10.3390/atmos11040344
APA StyleZhou, J., Cao, L., & Li, S. (2020). Influence of the Background Nitrogen Oxides on the Tropospheric Ozone Depletion Events in the Arctic during Springtime. Atmosphere, 11(4), 344. https://doi.org/10.3390/atmos11040344