Of Fire and Smoke Plumes, Polarimetric Radar Characteristics
Abstract
:1. Introduction
2. Examples of Observed Smoke Plumes
2.1. Grassfire in Oklahoma, February 12, 2017
2.1.1. Observation with the Terminal Doppler Weather Radar
2.1.2. Model of Ash Particles
2.2. Prairie fire Oklahoma, April 18, 2018
2.3. Little Bear Wildfire in New Mexico
2.4. Brushfire Near Castaic Lake, California
3. Discussion
3.1. Comparisons
3.2. Classification
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wildfire Statistics. Available online: https://fas.org/sgp/crs/misc/IF10244.pdf (accessed on 8 April 2020).
- National Park Service. Wildland Fire and Evaluations. 2019. Available online: https://www.nps.gov/articles/wildfire-causes-and-evaluation.htm (accessed on 8 April 2020).
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; di Virgilio, G.; McCarthy, N. Future changes in extreme weather and Pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [PubMed]
- Banta, R.M.; Oliver, L.D.; Holloway, E.T.; Kropfli, R.A.; Bartram, B.W.; Cupp, R.E.; Post, M.J. Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteor. 1992, 31, 1328–1349. [Google Scholar] [CrossRef] [Green Version]
- Hufford, G.L.; Keely, H.L.; Sparkman, G.W. Use of Real-Time Multisatellite and Radar Data to Support Forest Fire Management. Weather Forecast. 1998, 14, 592–605. [Google Scholar] [CrossRef]
- Saraiva, E.A.; Soares, R.V.; Batista, A.C.; Tertuliano, H.; Gomes, A.M. Monitoring forest fires and burnings with weather radar, Chapter 5. In Advances in Forest Fire Research; Coimbra University Press: Coimbra, Portugal, 2014; pp. 1436–1443. [Google Scholar]
- Jones, T.A.; Christopher, S.A. Injection heights of biomass burning debris estimated from WSR-88D radar observations. IEEE Tr. GRSS 2009, 47, 2599–2605. [Google Scholar] [CrossRef]
- La Roche, K.T.; Lang, T.J. Observations of Ash, Ice, and Lightning within Pyrocumulus Clouds Using Polarimetric NEXRAD Radars and the National Lightning Detection Network. Mon. Weather Rev. 2017, 145, 4899–4910. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Weather Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, V.M.; Zrnic, D.S.; Rabin, R.M.; Zhang, P. Radar polarimetric signatures of fire plumes in Oklahoma. Geoph. Res. Let. 2008, 35, 5. [Google Scholar] [CrossRef]
- McCarthy, N.; McGowan, H.; Guyot, A.; Dowdy, A. Mobile X-pol radar a new tool for investigating pyroconvection and associated wildfire meteorology. Bull. Am. Meteor. Soc. 2018, 99, 1177–1195. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, N.; Guyot, A.; Dowdy, A.; McGowan, H. Wildfire and weather radar: A review. J. Goeph. Res. Atmosph. 2019, 124, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Baum, T.; Thompson, L.; Chorbani, K. Complex dielectric constant of forest fire ash at X-band frequencies. IEEE Tr. GRSL 2011, 8, 859–863. [Google Scholar]
- Baum, T.; Thompson, L.; Chorbani, K. A complex dielectric mixing law model for forest fire ash particulates. IEEE Tr. GRSL 2012, 9, 832–835. [Google Scholar] [CrossRef]
- Baum, T.; Thompson, L.; Chorbani, K. The nature of fire ash particles: Microwave material properties, dynamic behavior, and temperature correlation. IEEE J. Selec. Top. Appl. Earth Obs. Rem. Sens. 2015, 8, 480–492. [Google Scholar] [CrossRef]
- Ghorbani, K.; Baum, T.C.; Thompson, L. Properties and radar cross-section of forest fire ash particles at millimeter wave. In Proceedings of the Microwave Conference (EuMC), 42nd European Conference, Amsterdam, The Netherlands, 29 October–1 November 2012; pp. 1335–1338. [Google Scholar]
- Hotta, M.; Hayashi, M.; Lanagan, M.T.; Agrawal, D.K.; Nagata, K. Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz. ISIJ Int. 2011, 11, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.R.; Brown, W.O. Radar observations of a major industrial fire. Bull. Am. Meteor. Soc. 1997, 78, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Erkelens, J.S.; Venema, V.K.C.; Russchenberg, H.W.J. Coherent Particle Scatter in Smoke and Cumulus Clouds. In Proceedings of the Igarss99, Hamburg, Germany, 28 June–2 July 1999; pp. 687–689. [Google Scholar]
- Jones, T.A.; Christopher, S.A.; Petersen, W. Dual-Polarization Radar Characteristics of an Apartment Fire. J. Atmos. Oceanic Technol. 2009, 26, 2257–2269. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.A.; Christopher, S.A. Satellite and radar observations of the 9 April 2009 Texas and Oklahoma grassfires. Bull. Am. Meteor. Soc. 2010, 91, 455–460. [Google Scholar] [CrossRef]
- Krause, J.M. A Simple Algorithm to Discriminate between Meteorological and Nonmeteorological Radar Echoes. J. Atmos. Oceanic Technol. 2016, 33, 1875–1885. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash droughts, review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteor. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Zrnic, D.S.; Ryzhkov, A.V. Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens. 1998, GE-36, 661–668. [Google Scholar] [CrossRef]
- Melnikov, V.M. Simultaneous transmission mode for polarimetric WSR-88D. National Severe Storms Laboratory, Report, June 2004. Norman OK. p. 85. Available online: www.nssl.noaa.gov/publications/wsr88d_reports/ (accessed on 8 April 2020).
- Melnikov, V.M.; Zrnic, D.S.; Rabin, R.M. Polarimetric properties of smoke plumes: A model. J. Geophys. Res. 2009, 114, D21204. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Radar Polarimetry for Weather Observations; Springer: Cham, Switzerland, 2019; 486p. [Google Scholar]
- Doviak, R.J.; Zrnic, D.S. Doppler Radar and Weather Observations, 2nd ed.; Reprint; Dover Publications: Mineola, NY, USA, 2006; 562p. [Google Scholar]
- Richardson, L.M.; Cunningham, J.G.; Zittel, W.D.; Lee, R.L.; Ice, R.L.; Melnikov, V.M.; Hoban, N.P.; Gebauer, J.G. Bragg scatter detection by the WSR-88F. Part I: Algorithm Development. J. Atmos. Oceanic Technol. 2017, 34, 465–478. [Google Scholar] [CrossRef]
- WIPL-D Electromagnetic Simulation Software. Available online: http://www.wipl-d.com (accessed on 16 March 2019).
- Mirkovic, Đ. Computational Electromagnetics for Polarimetric Radar Scatterers: An Approach to Polarimetric Variable Modeling of Hydrometeors and Biota; LAP Lambert Academic Publishing: Latvia, European Union, 2015; p. 241. [Google Scholar]
- Luchs, S.; Pendergrast, J. Using dual polarimetric radar to assess prescribed and wildland fire intensity in Florida. In Proceedings of the 17th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS’13); American Meteorological Society: Boston, MA, USA, 5–10 January 2013. [Google Scholar]
- Sica, R.; Doucet, P.; Godin-Beekmann, S. The untold story of pyrocumulonimbus. Bull. Am. Meteor. Soc. 2010, 91, 1193–1209. [Google Scholar]
- Gosard, E.E. Radar research on the atmospheric boundary layer. In Radar in Meteorology; Atlas, D., Ed.; American Meteorological Society: Boston, MA, USA, 1990. [Google Scholar]
- Melnikov, M.V.; Zrnic, D.S. Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol. 2007, 24, 1337–1350. [Google Scholar] [CrossRef]
Date | Z (dBZ, Peak) | ZDR (dB) Span | Location of ρhv Peak (in The Plume) | Location of ρhv Peak (Outside of The Plume) |
---|---|---|---|---|
12 February 2017 | 27 | −5 to 8 | 0.2 | 0.8 |
18 April 2017a | 39 | −5 to 8 | 0.2 | 0.5 |
12 March 2008b | 30 | −5 to 8 | 0.3 | 0.85 |
8 January 2020c | 30 | −5 to 8 | 0.5 | flat |
8 June 2012d | 30 | −2 to 8 | 0.5 | 0.9 |
17 June 2012fe | 20 | −2 to 8 | 0.5 | 0.9 |
31 March 2019f | 30 | −5 to 8 | 0.5 | 0.9 |
3 March 2019g | 30 | −2 to 8 | 0.5 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zrnic, D.; Zhang, P.; Melnikov, V.; Mirkovic, D. Of Fire and Smoke Plumes, Polarimetric Radar Characteristics. Atmosphere 2020, 11, 363. https://doi.org/10.3390/atmos11040363
Zrnic D, Zhang P, Melnikov V, Mirkovic D. Of Fire and Smoke Plumes, Polarimetric Radar Characteristics. Atmosphere. 2020; 11(4):363. https://doi.org/10.3390/atmos11040363
Chicago/Turabian StyleZrnic, Dusan, Pengfei Zhang, Valery Melnikov, and Djordje Mirkovic. 2020. "Of Fire and Smoke Plumes, Polarimetric Radar Characteristics" Atmosphere 11, no. 4: 363. https://doi.org/10.3390/atmos11040363
APA StyleZrnic, D., Zhang, P., Melnikov, V., & Mirkovic, D. (2020). Of Fire and Smoke Plumes, Polarimetric Radar Characteristics. Atmosphere, 11(4), 363. https://doi.org/10.3390/atmos11040363