Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy
Abstract
:1. Introduction
2. The Main European Legislation on Indoor Air Quality
- definition and imposition of reference concentration values on selected pollutants, in line with those developed by the WHO for some time;
- national plans on IAQ;
- drafting of legislative acts for indoor environments;
- setting up and planning mandatory indoor air monitoring activities;
- training and information programs dedicated to technical offices, managers, and staff on IAQ issues;
- protocols and guides for self-diagnostic activities based on scientific knowledge and practical experience on indoor air quality.
- -
- from 1 January 2018 for confined spaces, such as leisure centers, swimming pools, health facilities, social services, and nurseries with children under 6 years of age;
- -
- from 1 January 2018 for elementary education institutions;
- -
- before 1 January 2020 for juvenile detention facilities and first- and second-degree education or vocational training institutions;
- -
- from 1 January 2023 for all other indoor spaces.
- ○
- WHO guidelines for some chemical and biological pollutants and the risks associated with the presence of humidity;
- ○
- EN 15758:2010 Conservation of Cultural Heritage—procedures and instruments for measuring the temperature of the air and that of the surface of objects;
- ○
- EN 15759:2011 Conservation of cultural heritage—indoor climate—part 2: management of ventilation for the protection of buildings belonging to the cultural heritage and collections;
- ○
- EN 15759-2:2018 Conservation of cultural heritage—indoor climate—part 2: ventilation management for the protection of cultural heritage buildings and collections;
- ○
- EN 15898:2019 Conservation of cultural heritage—general terms and definitions;
- ○
- EN 16141:2012 Conservation of cultural heritage―guidelines for the management of environmental conditions in the storage areas of museum collections and plant engineering: definition and characteristics of collection centers for the preservation and management of cultural heritage;
- ○
- EN 16242:2012 Conservation of cultural heritage―procedures and instruments for measuring the humidity of the air and the exchange of steam between the air and the assets cultural heritage;
- ○
- EN 16682:2017 Conservation of cultural heritage―methods of measurement of moisture content, or water content, in materials constituting immovable cultural heritage;
- ○
- EN 16853:2017 Conservation of cultural heritage―conservation process—decision making, planning, and implementation;
- ○
- EN 16883:2017 Conservation of cultural heritage―guidelines for improving the energy performance of historic buildings;
- ○
- EN 16893:2018 Conservation of Cultural Heritage―specifications for location, construction, and modification of buildings or rooms intended for the storage or use of heritage collections.
3. The Italian Situation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suess, M.J. The Indoor Air Quality programme of the WHO regional office for Europe. Indoor Air 1992, 2, 180–193. [Google Scholar] [CrossRef]
- Mølhave, L.; Krzyzanowski, M. The right to healthy indoor air: Status by 2002. Indoor Air 2003, 13, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Braubach, M.; Krzyzanowski, M. Development and status of WHO indoor air quality guidelines. In Proceedings of the 9th International Healthy Buildings Conference and Exhibition HB2009, Syracuse, NY, USA, 13–17 September 2009. Abstract Code 94942. [Google Scholar]
- Tham, S.; Thompson, R.; Landeg, O.; Murray, K.A.; Waite, T. Indoor temperature and health: A global systematic review. Public Health 2020, 179, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Pitt, M. Sustainable workplaces and building user comfort and satisfaction. J. Corp. Real Estate 2011, 13, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Mitova, M.I.; Cluse, C.; Goujon-Ginglinger, C.G.; Kleinhans, S.; Rotach, M.; Tharin, M. Human chemical signature: Investigation on the influence of human presence and selected activities on concentrations of airborne constituents. Environ. Pollut. 2020, 257, 113518. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Varghese, G.K.; Ravi Varma, M.K. Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment. Heliyon 2019, 5, e02918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simanic, B.; Nordquist, B.; Bagge, H.; Johansson, D. Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. J. Build. Eng. 2019, 25, 100827. [Google Scholar] [CrossRef]
- Kane, S.; Mahal, A. Cost-effective treatment, prevention and management of chronic respiratory conditions: A continuing challenge. Respirology 2018, 23, 799–800. [Google Scholar] [CrossRef]
- Tang, H.; Ding, Y.; Singer, B. Interactions and comprehensive effect of indoor environmental quality factors on occupant satisfaction. Build. Environ. 2020, 167, 106462. [Google Scholar] [CrossRef]
- Fabianova, E.; Fletcher, T.; Koppova, K.; Hruba, F.; Houthuijs, D.; Antonova, T.; Volf, J.; Rudnai, P.; Zejda, J.; Niciu, E. On indoor air in Central Europe. 2001. Available online: https://researchonline.lshtm.ac.uk/id/eprint/16961 (accessed on 29 January 2020).
- Olesen, B.W. Revision of EN 15251: Indoor Environmental Criteria. REHVA J. August 2012. Available online: https://www.rehva.eu/rehva-journal/chapter/revision-of-en-15251-indoor-environmental-criteria (accessed on 29 January 2020).
- Settimo, G.; D’Alessandro, D. European community guidelines and standards in indoor air quality: What proposals for Italy. Epidemiol. Prev. 2014, 38, 36–41. [Google Scholar]
- Kunkel, S.; Kontonasiou, E.; Arcipowska, A.; Mariottini, F.; Atanasiu, B. Indoor Air Quality, Thermal, Comfort and Daylight; Buildings Performance Institute Europe (BPIE): Brussels, Belgium, 2015; ISBN 9789491143106. Available online: http://bpie.eu/uploads/lib/document/attachment/121/BPIE__IndoorAirQuality2015.pdf (accessed on 29 January 2020).
- World Health Organization (WHO). Indoor Air Pollutants Exposure and Health Effects Report on a WHO Meeting Nördlingen, 8–11 June 1982. (EURO reports and studies; 78); WHO: Copenhagen, Denmark, 1982. [Google Scholar]
- Scientific Committee on Health and Environmental Risks (SCHER). Preliminary Report on Risk Assessment on Indoor Air Quality. 31 January 2007. Available online: https://ec.europa.eu/health/archive/ph_risk/committees/04_scher/docs/scher_o_048.pdf (accessed on 29 January 2020).
- EN ISO 16000:2006. Indoor air; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- Innenraumlufthygiene-Kommission and the permanent woirkng group of the Highest State Health Authorities (Arbeitsgemeinschaft der Obersten Landesgesundheitsbehörden, AOLG). Ad-Hoc Working Group for Indoor Air Guide Values. Umwelt Bundesamt. 1993. Available online: http://www.umweltbundesamt.de/en/topics/health/commissions-working-groups/ ad-hoc-working-group-for-indoor-air-guide-values (accessed on 27 January 2020).
- Public Health England. Indoor Air Quality Guidelines for Selected Volatile Organic Compounds (VOCs) in the UK. 2019. Available online: https://www.gov.uk/government/publications/air-quality-uk-guidelines-for-volatile-organic-compounds-in-indoor-spaces (accessed on 28 January 2020).
- Royal College of Paedriatics and Child Health (RCPCH). Health Effects of Indoor Quality on Children and Young People. 2020. Available online: https://www.rcpch.ac.uk/sites/default/files/2020-01/the-inside-story-report_january-2020.pdf (accessed on 18 February 2020).
- Agence Nationale de Securitè Sanitaire l’alimentation, de l’environnement et du travail. Valeurs Guides de qualité d’Air Intérieur (VGAI). Le Directeur Général Maisons-Alfort, ANSES. 2011. Available online: http://www.anses.fr/fr/content/valeurs-guides-de-qualit%C3%A9-d%E2%80%99air-int%C3%A9rieur-vgai (accessed on 28 January 2020).
- France. Décret n° 2011–1727 du 2 décembre 2011 relatif aux valeurs-guides pour l’air intérieur pour le formaldéhyde et le benzene. J. Officiel République Française 2011. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024909119&categorieLien=id (accessed on 2 December 2011).
- France. Décret n° 2011–1728 du 2 décembre 2011 relatif à la surveillance de la qualité de l’air intérieur dans certains établissements recevant du public. J. Officiel République Française. 2011. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024909128 (accessed on 2 December 2011).
- Lafon, D. Plan national santé environnement: 2004–2008 National plan for health and environnement. Arch. Mal. Prof. Environ. 2005, 66, 360–368. [Google Scholar]
- Haut Conseil de la Santé publique (HCSP). Valeurs Reperes D’aide a la gestion dans l’air des espaces clos. Le formaldehyde; Ministère de la Santè et des Sports: Paris, France, 2009. [Google Scholar]
- RIVM-National Institute for Public Health and the Environment. Health-Based Guideline Values for the Indoor Environment (Report 609021044/2007); RIVM: Bilthoven, The Netherlands, 2007. [Google Scholar]
- Ahola, M.; Säteri, I.; Sariola, L. Revised Finnish classification of indoor climate 2018. E3S Web Conf. 2019, 111, 02017. [Google Scholar] [CrossRef] [Green Version]
- Hoge Gezondheidsraad. Indoor air quality in Belgium. HGR: Brussel. 2017; Advies nr. 8794. Available online: https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/hgr_8794_advice_iaq.pdf (accessed on 28 January 2020).
- Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft & Österreichischen Akademie Der Wissenschaften—BMLFUW (2006): Richtlinie zur Bewertung der Innenraumluft, erarbeitet vom Arbeitskreis Innenraumluft am Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft und der Österreichischen Akademie der Wissenschaften, Blau-Weiße Reihe (Loseblattsammlung); Österreichische Akademie der Wissenschaften: Wien, Austria. Available online: https://www.bmlrt.gv.at/umwelt/luft-laerm-verkehr/luft/innenraumluft/richtlinie_innenraum.html (accessed on 16 February 2020).
- Ministério Das Obras Públicas, Transportes e Comunicações. Decreto-Lei n. 79/2006 de 4 de Abril. Diário da República, I Série-A n. 67; Ministério Das Obras Públicas, Transportes e Comunicações: Lisboa, Portugal, 2006.
- Ministérios das Finanças e da Economia e do Emprego. Decreto n. 60/2013 de 5 de fevereiro de 2013. Diário da República, 2a Série n. 25; Ministérios das Finanças e da Economia e do Emprego: Lisboa, Portugal, 2013.
- World Health Organization. Air quality guidelines for Europe, 2nd ed.; WHO Regional Publications: Copenhagen, Denmark, 2000. [Google Scholar]
- World Health Organization. Air quality guidelines. Global Update 2005; WHO Regional Publications: Copenhagen, Denmark, 2006. [Google Scholar]
- World Health Organization. Guidelines for indoor air quality: Selected pollutants. Copenhagen: WHO Regional Office for Europe. 2010. Available online: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf (accessed on 18 January 2020).
- Norway Ministry of Labour and Social Affairs. Regulations concerning the design and layout of workplaces and work premises (the Workplace Regulations). FOR-2017-04-18-473. January 2013. Available online: https://lovdata.no/dokument/SFE/forskrift/2011-12-06-1356 (accessed on 5 February 2020).
- Lietuvos Respublikos Sveikatos Apsaugos Ministras. Įsakymas dėl Lietuvos Higienos Normos Hn 35:2007 “Didžiausia Leidžiama Cheminių Medžiagų (Teršalų) Koncentracija Gyvenamosios Aplinkos Ore“ Patvirtinimo. 10 May 2007, nr. V-362; Lietuvos Respublikos Sveikatos Apsaugos Ministras: Vilnius, Lithuania, 2007.
- Ordinance of the Polish Minister of Labour and Social Policy of September 26, 1997 on General Safety and Health. J. Laws 2003, 169, 1650.
- Fuselli, S.; Pilozzi, A.; Santarsiero, A.; Settimo, G.; Brini, S.; Lepore, A.; de Gennaro, G.; Loiotile, A.D.; Marzocca, A.; de Martino, A.; et al. Monitoring strategies for volatile organic compounds (VOCs) in indoor environments. Rapp. ISTISAN 2013, 13/04, 31. Available online: http://old.iss.it/binary/publ/cont/13_4_web.pdf (accessed on 1 March 2020).
- Bonadonna, L.; Briancesco, R.; Brunetto, B.; Coccia, A.M.; De Gironimo, V.; Della Libera, S.; Fuselli, S.; Gucci, P.M.B.; Iacovacci, P.; Lacchetti, I.; et al. Monitoring strategies of biological air pollution in indoor environment. Rapp. ISTISAN 2013, 13/37, 72. Available online: http://old.iss.it/binary/publ/cont/13_37_web.pdf (accessed on 1 March 2020).
- Fuselli, S.; Musmeci, L.; Pilozzi, A.; Santarsiero, A.; Settimo, G. Proceedings on Indoor air pollution: Current situation in Italy. Rome, 25 June 2012. Rapp. ISTISAN 2013, 13/39, 85. Available online: http://old.iss.it/binary/publ/cont/13_39_web.pdf (accessed on 1 March 2020).
- Santarsiero, A.; Musmeci, L.; Fuselli, S. Proceedings on Indoor air quality: Current national and European situation. The expertise of the National Working Group on indoor air. Rome, 28 May 2014. Rapp. ISTISAN 2015, 15/04, 134. Available online: http://old.iss.it/binary/publ/cont/15_4_web.pdf (accessed on 1 March 2020).
- Musmeci, L.; Fuselli, S.; Bruni, B.M.; Sala, O.; Bacci, T.; Somigliana, A.B.; Campopiano, A.; Prandi, S.; Garofani, P.; Martinelli, C.; et al. Monitoring strategies to assess the concentration of airborne asbestos and man-made vitreous fibres in the indoor environment. Rapp. ISTISAN 2015, 15/05, 37. Available online: http://old.iss.it/binary/publ/cont/15_5_web.pdf (accessed on 1 March 2020).
- Santarsiero, A.; Musmeci, L.; Ricci, A.; Corasaniti, S.; Coppa, P.; Bovesecchi, G.; Merluzzi, R.; Fuselli, S. Microclimate parameters and indoor air pollution. Rapp. ISTISAN 2015, 15/25, 62. Available online: http://old.iss.it/binary/publ/cont/15_25_web.pdf (accessed on 1 March 2020).
- Settimo, G.; Baldassarri, L.T.; Brini, S.; Lepore, A.; Moricci, F.; de Martino, A.; Casto, L.; Musmeci, L.; Nania, M.A.; Costamagna, F.; et al. Presence of CO2 and H2S in indoor environments: Current knowledge and scientific field literature. Rapp. ISTISAN 2016, 16/15, 30. Available online: http://old.iss.it/binary/publ/cont/16_15_web.pdf (accessed on 1 March 2020).
- Settimo, G.; Musmeci, L.; Marzocca, A.; Cecinato, A.; Cattani, G.; Fuselli, S. Monitoring strategies to PM10 and PM2.5 in indoor environments: Characterization of inorganic and organic micropollutants. Rapp. ISTISAN 2016, 16/16, 34. Available online: http://old.iss.it/binary/publ/cont/16_16_web.pdf (accessed on 1 March 2020).
- Nuccetelli, C.; Risica, S.; Onisei, S.; Leonardi, F.; Trevisi, R. Natural radioactivity in building materials in the European Union: A database of activity concentrations, radon emanations and radon exhalation rates. Rapp. ISTISAN 2017, 17/36, 70. Available online: http://old.iss.it/binary/publ/cont/17_36_web.pdf (accessed on 1 March 2020).
- Settimo, G.; Bonadonna, L.; Gherardi, M.; di Gregorio, F.; Cecinato, A. Indoor air quality in healthcare environments: Strategies for monitoring chemical and biological pollutants. Rapp. ISTISAN 2019, 19/17, 55. Available online: http://old.iss.it/binary/publ/cont/19_17_web.pdf (accessed on 1 March 2020).
- Settimo, G.; Bonadonna, L.; Gucci, P.M.B.; Gherardi, M.; Cecinato, A.; Brini, S.; De Maio, F.; Lepore, A.; Giardi, G. Qualità dell’aria indoor negli ambienti scolastici: strategie di monitoraggio degli inquinanti chimici e biologici. Rapp. ISTISAN 2020, 20/3, 67. [Google Scholar]
- Pierpaoli, M.; Ruello, M.L. Indoor Air Quality: A bibliometric study. Sustainability 2018, 10, 3830. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environ. Int. 2018, 118, 134–145. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Vichi, F.; Imperiali, A.; Cecinato, A. Indoor air quality at life and work environments in Rome, Italy. Environ. Sci. Pollut. Res. 2016, 23, 3503–3516. [Google Scholar] [CrossRef]
- Di Gilio, A.; Farella, G.; Marzocca, A.; Giua, R.; Assennato, G.; Tutino, M.; De Gennaro, G. Indoor/outdoor air quality assessment at school near the steel plant in Taranto (Italy). Adv. Meteorol. 2017, 2017, 1526209. [Google Scholar] [CrossRef] [Green Version]
- Stabile, L.; Massimo, A.; Canale, L.; Russi, A.; Andrade, A.; Dell’Isola, M. The effect of ventilation strategies on indoor air quality and energy consumptions in classrooms. Buildings 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Stabile, L.; Buonanno, G.; Frattolillo, A.; Dell’Isola, M. The effect of the ventilation retrofit in a school on CO2, airborne particles, and energy consumptions. Build. Environ. 2019, 156, 1–11. [Google Scholar] [CrossRef]
- Aversa, P.; Settimo, G.; Gorgoglione, M.; Bucci, E.; Padula, G.; de Marco, A. A case study of indoor air quality in a classroom by comparing passive and continuous monitoring. Environ. Eng. Manag. J. 2019, 18, 2107–2115. [Google Scholar]
- Schibuola, L.; Tambani, C. Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels. Atmos. Pollut. Res. 2020, 11, 332–342. [Google Scholar] [CrossRef]
- Azara, A.; Dettori, M.; Castiglia, P.; Piana, A.; Durando, P.; Parodi, V.; Salis, G.; Saderi, L.; Sotgiu, G. Indoor radon exposure in Italian schools. Int. J. Environ. Res. Pub. Health 2018, 15, 749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Carlo, C.; Lepore, L.; Gugliermetti, L.; Remetti, R. An inexpensive and continuous radon progeny detector for indoor air-quality monitoring. In WIT Transactions on Ecology and the Environment; Passerini, G., Borrego, C., Longhurst, J., Lopes, M., Barnes, J., Eds.; WIT Press: Ashurst, UK, 2019; Volume 236, pp. 325–333. [Google Scholar]
- De Gennaro, G.; Dambruoso, P.R.; Di Gilio, A.; di Palma, V.; Marzocca, A.; Tutino, M. Discontinuous and continuous indoor air quality monitoring in homes with fireplaces or wood stoves as heating system. Int. J. Environ. Res. Pub. Health 2015, 13, 78. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Frattolillo, A.; Guerriero, E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ. Pollut. 2018, 235, 65–73. [Google Scholar] [CrossRef]
- Marchetti, S.; Longhin, E.; Bengalli, R.; Avino, P.; Stabile, L.; Buonanno, G.; Colombo, A.; Camatini, M.; Mantecca, P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Sci. Total Environ. 2019, 649, 1422–1433. [Google Scholar] [CrossRef]
- Gola, M.; Settimo, G.; Capolongo, S. Chemical pollution in healing spaces: The decalogue of the best practices for adequate indoor air quality in inpatient rooms. Int. J. Environ. Res. Pub. Health 2019, 16, 4388. [Google Scholar] [CrossRef] [Green Version]
- Gola, M.; Settimo, G.; Capolongo, S. Indoor air in healing environments: Monitoring chemical pollution in inpatient rooms. Facilities 2019, 37, 600–623. [Google Scholar] [CrossRef]
- Manigrasso, M.; Guerriero, E.; Avino, P. Ultrafine particles in residential indoors and doses deposited in the human respiratory system. Atmosphere 2015, 6, 1444–1461. [Google Scholar] [CrossRef] [Green Version]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef]
- Avino, P.; Scungio, M.; Stabile, L.; Cortellessa, G.; Buonanno, G.; Manigrasso, M. Second-hand aerosol from tobacco and electronic cigarettes: Evaluation of the smoker emission rates and doses and lung cancer risk of passive smokers and vapers. Sci. Total Environ. 2018, 642, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zanni, S.; Lalli, F.; Foschi, E.; Bonoli, A.; Mantecchini, L. Indoor air quality real-time monitoring in airport terminal areas: An opportunity for sustainable management of micro-climatic parameters. Sensors 2018, 18, 3798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siani, A.M.; Frasca, F.; Di Michele, M.; Bonacquisti, V.; Fazio, E. Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums. Environ. Sci. Pollut. Res. 2018, 25, 28787–28797. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, A.; Martellini, T.; Amore, A.; Dei, L.; Marrazza, G.; Carretti, E.; Belosi, F.; Ravegnani, F.; Leva, P. Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy). Sci. Total Environ. 2016, 572, 333–339. [Google Scholar] [CrossRef]
- Tirler, W.; Settimo, G. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels. Ann. I. Super. Sanita 2015, 51, 28–33. [Google Scholar]
- SWD. Commission Staff Working Document, 143, Accompanying the Document, Report form the Commission to the European Parliament and the Council, Financial Support for Energy Efficiency in Buildings. 2013. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/swd_2013_143_accomp_report_financing_ee_buildings.pdf (accessed on 18 April 2013).
EN ISO 16000 « Indoor Air » | |
---|---|
Part 1 | General aspects of sampling strategy |
Part 2 | Sampling strategy for formaldehyde |
Part 3 | Determination of formaldehyde and other carbonyl compounds―active sampling method |
Part 4 | Determination of formaldehyde―diffusive sampling method |
Part 5 | Sampling strategy for volatile organic compounds (VOCs) |
Part 6 | Indoor air Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption, and gas chromatography using MS or MS-flame ionization detector (FID) |
Part 7 | Sampling strategy for determination of airborne asbestos fiber concentrations |
Part 8 | Determination of local mean ages of air in buildings for characterizing ventilation conditions |
Part 9 | Determination of the emission of volatile organic compounds from building products and furnishing―emission test chamber method |
Part 10 | Determination of the emission of volatile organic compounds from building products and furnishing―emission test cell method |
Part 11 | Determination of the emission of volatile organic compounds from building products and furnishing―sampling, storage of samples, and preparation of test specimens |
Part 12 | Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polycyclic aromatic hydrocarbons (PAHs) |
Part 13 | Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls and polychlorinated dibenzo-p-dioxins/dibenzofurans―collection on sorbent-backed filters with high resolution gas chromatographic/mass spectrometric analysis |
Part 14 | Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs)―extraction, clean up, and analysis by high-resolutions gas chromatographic and mass spectrometric analysis) |
Part 15 | Sampling strategy for nitrogen dioxide (NO2) |
Part 16 | Detection and enumeration of molds―sampling of molds by filtration |
Part 17 | Detection and enumeration of molds―culture-based method |
Part 18 | Detection and enumeration of molds―sampling by impaction |
Part 19 | Sampling strategy for molds |
Part 20 | Detection and enumeration of molds―determination of total spore count |
Part 21 | Detection and enumeration of molds―sampling from materials |
Part 22 | Detection and enumeration of molds―molecular methods |
Part 23 | Performance test for evaluating the reduction of formaldehyde concentrations by sorptive building materials |
Part 24 | Performance test for evaluating the reduction of volatile organic compound (except formaldehyde) concentrations by sorptive building material |
Part 25 | Determination of the emission of semi-volatile organic compounds by building products―micro-chamber method |
Part 26 | Sampling strategy for carbon dioxide (CO2) |
Part 27 | Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy) (direct method) |
Part 28 | Determination of odor emissions from building products using test chambers |
Part 29 | Test methods for VOC detectors |
Part 30 | Sensory testing of indoor air |
Part 31 | Measurement of flame retardants and plasticizers based on organophosphorus compounds―phosphoric acid ester |
Part 32 | Investigation of buildings for pollutants and other injurious factors―inspections |
Part 33 | Determination of phthalates with gas chromatography/mass spectrometry (GC/MS) |
Part 34 | General strategies for the measurement of airborne particle |
Part 35 | Measurement of polybrominated diphenylether, hexabromocyclododecane, and hexabromobenzene |
Part 36 | Test method for the reduction rate of airborne bacteria by air purifiers using a test chamber ISO 16000 |
Part 37 | Strategies for the measurement of PM2.5 |
Part 38 | Determination of amines in indoor and test chamber air―active sampling on samplers containing phosphoric acid impregnated filters |
Part 39 | Determination of amines―analysis of amines by (ultra-)high-performance liquid chromatography coupled to high resolution or tandem mass spectrometry |
Part 40 | Indoor air quality management system |
Contaminant (Unit of Measurement) | WHO Guidelines (Outdoor a) | WHO Guidelines (Indoor a) | France | Germany | Netherlands | United Kingdom | Belgium (Flanders) | Finland c | Austria | Portugal | Norway | Lithuania | Poland (Residential) | Poland (Public Offices) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | [32,33] | [34] | [21,22,23,24,25] | [18] | [26] | [20] | [28] | [27] | [29] | [30] | [35] | [36] | [37] | [37] |
Benzene b (µg m−3) | 0.17 (UR/lt) 10−6 1.7 (UR/lt) 10−5 | 0.17 (UR/lt) 10−6 1.7 (UR/lt) 10−5 | 30 ( 24 h) 10 (1 y) RA: 10 LP: 2 0.2 (UR/lt) 10−6 2 (UR/lt) 10−5 | - | 20 | 5 (1 y) | GV ≤ 2 IV 10 | - | - | 5 (8 h) | - | - | 10 (24 h) | 20 (8 h) |
Formaldehyde (µg m−3) | 100 (30 m) | 100 (30 m) | 50 (2 h) 10 (1 y) 30 (10 from 2023) RA: 100 LP: 10 | 120 | 120 (30 m) 10 (1 y) 1.2 (LP) | 100 (30 m) | GV10 (30 m) IV100 (30 m) | 50 | 100 (30 m) 60 (24 h) | 100 (8 h) | 100 (30 m) | 100 | 50 (24 h) | 100 (8 h) |
CO (mg m−3) | 100 (15 m) 60 (30 m) 30 (1 h) 10 (8 h) | 100 (15 m) 35 (1 h) 10 (8 h) 7 (24 h) | 100 (15 m) 60 (30 m) 30 (1 h) 10 (8 h) | 1.5 (8 h) RWI 6 (30 m) RWI 60 (30 m) RWII 15 (8 h) RWII | 100 (15 m) 60 (30 m) 30 (1 h) 10 (8 h) | 100 (15 m) 60 (30 m) 30 (1 h) 10 (8 h) | GV 5.7 (24 h) IV 30 (1 h) | 8 | -- | 10 (8 h) | 25 (1 h) 10 (8 h) | 10 | 25 (1 h) | 10 (8 h) |
NO2 (µg m−3) | 200 (1 h) 40 (1 y) | 200 (1 h) 40 (1 y) | 200 (1 h) 40 (1 y) | 350 (30 m) RWII 60 (7 d) RWII | 200 (1 h) 40 (1 y) | 300 (1 h) 40 (1 y) | GV 135 (1 h) IV 200 (1 h) | - | - | - | 200 (1 h) 100 (24 h) | - | - | - |
Naphthalene (µg m−3) | - | 10 (1 y) | 10 (1 y) | 20 (7 d) RWI 200 (7 d) RWII | 25 | - | - | - | - | - | - | - | 100 (24 h) | 150 (8 h) |
Styrene (µg m−3) | 260 (7 d)70 (30 m) | - | - | 30 (7 d) RWI 300 (7 d) RWII | 900 | - | - | 1 | 40 (7 d) 10 (1 h) | - | - | - | 20 (24 h) | 30 (8 h) |
PAHs (as BaP) b (ng m−3) | 0.012 ng m−3 (UR/lt) 10−6 0.12 ng m−3 (UR/lt) 10−5 | 0.012 ng m−3 (UR/lt) 10−6 0.12 ng m−3 (UR/lt) 10−5 | - | - | 1.2 | 0.25 (1 y) | - | - | - | - | - | - | - | - |
Tetrachloroethylene (µg m−3) | 250 (1 y) 8000 (30 m) | 250 (1 y) | 1380 (1–14 d) 250 (1 y) RV: 250 LP: 250 | 1 (7 d) | 250 | - | 100 | - | 250 (7 d) | 250 (8 h) | - | - | - | - |
Trichloroethylene b (µg m−3) | 2.3 µg m−3 (UR/lf) 10−6 23 µg m-3 (UR/lf) 10-5 | 2.3 µg m−3 (UR/lf) 10−6 23 µg m−3 (UR/lf) 10−5 | 800 (14 d−1 y) RA: 10 RV: 2 LP: 2.0 (UR/lt) 10−6 20 (UR/lt) 10−5 | 1 (7 d) | - | - | 200 | - | -- | 25 (8 h) | - | - | 150 (24 h) | 200 (8 h) |
Dichloromethane (µg m−3) | 3000 (24 h) 450 (7 d) | - | - | 200 (24 h) RWI 2000 (24 h) RWII | 200 (1 y) | - | - | - | - | - | - | - | - | - |
Toluene (µg m-3) | 260 (7 d) 1000 (30 m) | - | - | 300 (1–14 d) RWI 3000 (1–14 d) RWII | 200 (1 y) | - | 260 | - | 75 (1 h) | 250 (8 h) | - | - | 200 (24 h) | 250 (8 h) |
Total VOCs (µg m−3) | - | - | - | - | 200 (1 y) | - | 200 | - | - | 600 (8 h) | 400 | 600 | 400 | - |
PM10 (µg m−3) | 50 (24 h) 20 (1 y) | - | 50 (24 h) 20 (1 y) RA: 75 LP: 15 | - | 50 (24 h) 20 (1 y) | - | 40 (24 h) | 50 | - | 50 (8 h) | 90 (8 h) | 100 | 90 (8 h) | - |
PM2.5 (µg m−3) | 25 (24 h) 10 (1 y) | - | 25 (24 h) 10 (1 y) RA: 50 LP: 10 | 25 (24 h) | 25 (24 h) 10 (1 y) | - | 15 (1 y) | - | - | 25 (8 h) | 40 (8 h) | - | 40 (8 h) | - |
Title | Ref. | |
---|---|---|
Rapp. ISTISAN | Monitoring strategies for volatile organic compounds (VOCs) in indoor environments | [38] |
Rapp. ISTISAN | Monitoring strategies of biological air pollution in indoor environment | [39] |
Rapp. ISTISAN | Proceedings of the Workshop “Indoor air pollution: current situation in Italy”. Rome, 25 June 2012 | [40] |
Rapp. ISTISAN | Proceedings of the Workshop “Indoor air quality: current national and European situation. The expertise of the National Working Group on indoor air”. Rome, 28 May 2014 | [41] |
Rapp. ISTISAN | Monitoring strategies to assess the concentration of airborne asbestos and man-made vitreous fibers in the indoor environment | [42] |
Rapp. ISTISAN | Microclimate parameters and indoor air pollution | [43] |
Rapp. ISTISAN | Presence of CO2 and H2S in indoor environments: current knowledge and scientific field literature | [44] |
Rapp. ISTISAN | Monitoring strategies to PM10 and PM2.5 in indoor environments: characterization of inorganic and organic micro-pollutants | [45] |
Rapp. ISTISAN | Natural radioactivity in building materials in the European Union: a database of activity concentrations, radon emanations and radon exhalation rates 1 | [46] |
Rapp. ISTISAN | Indoor air quality in healthcare environments: strategies for monitoring chemical and biological pollutants | [47] |
[48] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settimo, G.; Manigrasso, M.; Avino, P. Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere 2020, 11, 370. https://doi.org/10.3390/atmos11040370
Settimo G, Manigrasso M, Avino P. Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere. 2020; 11(4):370. https://doi.org/10.3390/atmos11040370
Chicago/Turabian StyleSettimo, Gaetano, Maurizio Manigrasso, and Pasquale Avino. 2020. "Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy" Atmosphere 11, no. 4: 370. https://doi.org/10.3390/atmos11040370
APA StyleSettimo, G., Manigrasso, M., & Avino, P. (2020). Indoor Air Quality: A Focus on the European Legislation and State-of-the-Art Research in Italy. Atmosphere, 11(4), 370. https://doi.org/10.3390/atmos11040370