Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model
Abstract
:1. Introduction
2. Modelling
3. Results and Discussion
3.1. Global Budget of PFOA
3.2. Surface Plots of PFOA and the Atmospheric Fate of PFOA in Terms of Its Reaction with Criegee Intermediates
3.3. Measurement Data Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellis, D.A.; Moody, C.A.; Mabury, S.A. Organofluorines. In The Handbook of Environmental Chemistry; Nielson, A., Ed.; Springer: Heidelberg, Germany, 2002; Chapter 3, Part N. [Google Scholar]
- Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 2005, 51, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.W.; Smithwick, M.M.; Braune, B.M.; Hoekstra, P.F.; Muir, D.C.G.; Mabury, S.A. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol. 2004, 38, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, J.; Wallace, K.B. Perfluorooctanoate, perfluorooctanesulfonate, and N-ethylperfluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis. Toxicol. Lett. 2002, 129, 23–32. [Google Scholar] [CrossRef]
- Upham, B.L.; Deocampo, N.D.; Wurl, B.; Trosko, J.E. Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail. Int. J. Cancer 1998, 78, 491–495. [Google Scholar] [CrossRef]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbühler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environ. Int. 2014, 69, 166–176. [Google Scholar] [CrossRef]
- EWG. PFCs: Global Contaminants. Available online: https://www.ewg.org/research/pfcs-global-contaminants (accessed on 18 March 2020).
- Kannan, K.; Corsolini, S.; Falandysz, J.; Fillmann, G.; Kumar, K.S.; Loganathan, B.G.; Mohd, M.A.; Olivero, J.; Wouwe, N.V.; Yang, J.H.; et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ. Sci. Technol. 2004, 38, 4489–4495. [Google Scholar] [CrossRef]
- Sturm, R.; Ahrens, L. Trends of polyfluoroalkyl compounds in marine biota and in humans. Environ. Chem. 2010, 7, 457–484. [Google Scholar] [CrossRef] [Green Version]
- Dietz, R.; Bossi, R.; Rigét, F.F.; Sonne, C.; Born, E.W. Increasing perfluoroalkyl contaminants in East Greenland polar bears (Ursus maritimus): A new toxic threat to the Arctic bears. Environ. Sci. Technol. 2008, 42, 2701–2707. [Google Scholar] [CrossRef]
- EPA. Health Effects Support Document for Perfluorooctanoic Acid (PFOA). EPA 822-R-16-003; 2016. Available online: www.epa.gov/ground-water-and-drinking-water/supporting-documents-drinking-water-health-advisories-pfoa-and-pfos (accessed on 18 March 2020).
- Stemmler, I.; Lammel, G. Pathways of PFOA to the Arctic: Variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources. Atmos. Chem. Phys. 2010, 10, 9965–9980. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Wang, Z.; Mi, W.; Möller, A.; Wolschke, H.; Ebinghaus, R. Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic. Sci. Rep. 2015, 5, 8912. [Google Scholar] [CrossRef] [Green Version]
- EPA. Technical Fact Sheet- Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). EPA 505-F-17-001; United States Environmental Protection Agency, 2017. Available online: https://www.epa.gov/sites/production/files/2017-12/documents/ffrrofactsheet_contaminants_pfos_pfoa_11-20-17_508_0.pdf (accessed on 18 March 2020).
- Programme, U.E. The New POPs under the Stockholm Convention. Available online: http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 20 March 2020).
- Wallington, T.J.; Hurley, M.D.; Xia, J.; Wuebbles, D.J.; Sillman, S.; Ito, A.; Penner, J.E.; Ellis, D.A.; Martin, J.; Mabury, S.A.; et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ. Sci. Technol. 2006, 40, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.A.; Martin, J.W.; De Silva, A.O.; Mabury, S.A.; Hurley, M.D.; Andersen, M.P.S.; Wallington, T.J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316–3321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tang, J.; Mi, L.; Tian, C.; Zhong, G.; Zhang, G.; Wang, S.; Li, Q.; Ebinghaus, R.; Xie, Z.; et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Sci. Total Environ. 2017, 599, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Dorman, F.L.; Reiner, E.J. Chapter 28—Emerging and persistent environmental compound analysis. In Gas Chromatography; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 647–677. [Google Scholar]
- Ellis, D.A.; Martin, J.W.; Mabury, S.A.; Hurley, M.D.; Andersen, M.P.S.; Wallington, T.J. Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol. 2003, 37, 3816–3820. [Google Scholar] [CrossRef]
- Vierke, L.; Staude, C.; Biegel-Engler, A.; Drost, W.; Schulte, C. Perfluorooctanoic acid (PFOA)—Main concerns and regulatory developments in Europe from an environmental point of view. Environ. Sci. Eur. 2012, 24, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, P. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185 nm vacuum ultraviolet. J. Environ. Sci. 2014, 26, 2207–2214. [Google Scholar] [CrossRef]
- Taatjes, C.A.; Khan, M.A.H.; Eskola, A.J.; Percival, C.J.; Osborn, D.L.; Wallington, T.J.; Shallcross, D.E. Reaction of perfluorooctanoic acid with Criegee intermediates and implications for the atmospheric fate of perfluorocarboxylic acids. Environ. Sci. Technol. 2019, 53, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Houde, M.; Martin, J.W.; Letcher, R.J.; Solomon, K.R.; Muir, D.C.G. Biological monitoring of polyfluoroalkyl substances: A review. Environ. Sci. Technol. 2006, 40, 3463–3473. [Google Scholar] [CrossRef]
- Armitage, J.M.; MacLeod, M.; Cousins, I.T. Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Environ. Sci. Technol. 2009, 43, 1134–1140. [Google Scholar] [CrossRef]
- Vereecken, L.; Novelli, A.; Taraborrelli, D. Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates. Phys. Chem. Chem. Phys. 2017, 19, 31599–31612. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.H.; Percival, C.J.; Caravan, R.L.; Taatjes, C.A.; Shallcross, D.E. Criegee intermediates and their impacts on the troposphere. Environ. Sci. Process. Impacts 2018, 20, 437–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhantyal-Pun, R.; Khan, M.A.H.; Martin, R.; Zachhuber, N.; Buras, Z.J.; Percival, C.J.; Shallcross, D.E.; Orr-Ewing, A.J. Direct kinetic and atmospheric modeling studies of Criegee intermediate reactions with acetone. ACS Earth Space Chem. 2019, 3, 2363–2371. [Google Scholar] [CrossRef]
- Lin, J.M., Jr.; Chao, W. Structure-dependent reactivity of Criegee intermediates studies with spectroscopic methods. Chem. Soc. Rev. 2017, 46, 7483–7497. [Google Scholar] [CrossRef]
- Taatjes, C.A. Criegee intermediates: What direct production and detection can teach us about reactions of carbonyl oxides. Annu. Rev. Phys. Chem. 2017, 68, 183–207. [Google Scholar] [CrossRef]
- Welz, O.; Eskola, A.J.; Sheps, L.; Rotavera, B.; Savee, J.D.; Scheer, A.M.; Osborn, D.L.; Lowe, D.; Booth, A.M.; Xiao, P.; et al. Rate coefficients of Criegee intermediate (CH2OO and CH3CHOO) reactions with formic and acetic acid are close to their collision limit: Direct kinetics measurements and atmospheric implications. Angew. Chem. Int. Ed. 2014, 53, 4547–4550. [Google Scholar] [CrossRef] [PubMed]
- Foreman, E.S.; Kapnas, K.M.; Murray, C. Reactions between Criegee intermediates and the inorganic acids HCl and HNO3: Kinetics and atmospheric implications. Angew. Chem. Int. Ed. 2016, 55, 10419–10422. [Google Scholar] [CrossRef] [Green Version]
- Chhantyal-Pun, R.; McGillen, M.R.; Beames, J.M.; Khan, M.A.H.; Percival, C.J.; Shallcross, D.E.; Orr-Ewing, A.J. Temperature dependence of the rates of reaction of trifluoroacetic acid with Criegee intermediates. Angew. Chem. Int. Ed. 2017, 56, 9044–9047. [Google Scholar] [CrossRef] [Green Version]
- Chhantyal-Pun, R.; Rotavera, B.; McGillen, M.R.; Khan, M.A.H.; Eskola, A.J.; Caravan, R.L.; Blacker, L.; Tew, D.P.; Osborn, D.L.; Percival, C.J.; et al. Criegee intermediate reactions with carboxylic acids: A potential source of secondary organic aerosol in the atmosphere. ACS Earth Space Chem. 2015, 2, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Østerstrøm, F.; Wallington, T.J.; Andersen, M.; Nielsen, O.J. Atmospheric chemistry of (CF3)2CHOCH3, (CF3)2CHOCHO, and CF3C(O)OCH3. J. Phys. Chem. A 2015, 119, 10540–10552. [Google Scholar] [CrossRef]
- Collins, W.J.; Stevenson, D.S.; Johnson, C.E.; Derwent, R.G. Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J. Atmos. Chem. 1997, 26, 223–274. [Google Scholar] [CrossRef]
- Johns, T.C.; Carnell, R.E.; Crossley, J.F.; Gregory, J.M.; Mitchell, J.F.B.; Senior, C.A.; Tett, S.F.B.; Wood, R.A. The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation. Clim. Dyn. 1997, 13, 103–134. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Archibald, A.T.; Maxwell, P.; Morris, W.C.; Xiao, P.; Derwent, R.G.; Jenkin, M.E.; Percival, C.J.; et al. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI. Atmos. Environ. 2015, 112, 269–277. [Google Scholar]
- Derwent, R.G.; Stevenson, D.S.; Doherty, R.M.; Collins, W.J.; Sanderson, M.G. How is surface ozone in Europe linked to Asian and North American NOx emissions? Atmos. Environ. 2008, 42, 7412–7422. [Google Scholar]
- Jenkin, M.E.; Watson, L.A.; Utembe, S.R.; Shallcross, D.E. A Common Representative Intermediate (CRI) mechanism for VOC degradation. Part-1: Gas phase mechanism development. Atmos. Environ. 2008, 42, 7185–7195. [Google Scholar]
- Watson, L.A.; Shallcross, D.E.; Utembe, S.R.; Jenkin, M.E. A Common Representative Intermediate (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 2008, 42, 7196–7204. [Google Scholar]
- Utembe, S.R.; Watson, L.A.; Shallcross, D.E.; Jenkin, M.E. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Atmos. Environ. 2009, 43, 1982–1990. [Google Scholar]
- Utembe, S.R.; Cooke, M.C.; Archibald, A.T.; Jenkin, M.E.; Derwent, R.G.; Shallcross, D.E. Using a reduced Common Representative Intermediates (CRI v2-R5) mechanism to simulate tropospheric ozone in a 3-D Lagrangian chemistry transport model. Atmos. Environ. 2010, 44, 1609–1622. [Google Scholar]
- Khan, M.A.H.; Jenkin, M.E.; Foulds, A.; Derwent, R.G.; Percival, C.J.; Shallcross, D.E. A modeling study of secondary organic aerosol formation from sesquiterpenes using the STOCHEM global chemistry and transport model. J. Geophys. Res. Atmos. 2017, 122, 4426–4439. [Google Scholar]
- Khan, A.; Razis, B.; Gillespie, S.; Percival, C.; Shallcross, D. Global analysis of carbon disulfide (CS2) using the 3-D chemistry transport model STOCHEM. Aims Environ. Sci. 2017, 4, 484–501. [Google Scholar]
- Percival, C.J.; Welz, O.; Eskola, A.J.; Savee, J.D.; Osborn, D.L.; Topping, D.O.; Lowe, D.; Utembe, S.R.; Bacak, A.; McFiggans, G.; et al. Regional and global impacts of Criegee intermediates on atmospheric sulfuric acid concentrations and first steps of aerosol formation. Faraday Discuss. 2013, 165, 45–73. [Google Scholar]
- Von Kuhlmann, R.; Lawrence, M.G.; Crutzen, P.J.; Rasch, P.J. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results. J. Geophys. Res. Atmos. 2003, 108, 4294. [Google Scholar]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar]
- Penner, J.E.; Atherton, C.S.; Graedel, T.E. Global Emissions and Models of Photochemically Active compounds. In Global Atmospheric-Biospheric Chemistry; Prinn, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; Volume 48, pp. 223–247. [Google Scholar]
- Dinglasan, M.J.A.; Ye, Y.; Edwards, E.A.; Mabury, S.A. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ. Sci. Technol. 2004, 38, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Xiao, P.; Derwent, R.G.; Jenkin, M.E.; Archibald, A.T.; Maxwell, P.; Morris, W.C.; South, N.; et al. Reassessing the photochemical production of methanol from peroxy radical self and cross reactions using the STOCHEM-CRI global chemistry and transport model. Atmos. Environ. 2014, 99, 77–84. [Google Scholar] [CrossRef]
- Master Chemical Mechanism (MCM), ver. 3.2. Available online: http://mcm.leeds.ac.uk/MCM (accessed on 18 March 2020).
- McGillen, M.R.; Curchod, B.F.E.; Chhantyal-Pun, R.; Beames, J.M.; Watson, N.; Khan, M.A.H.; McMahon, L.; Shallcross, D.E.; Orr-Ewing, A.J. Criegee intermediate-alcohol reactions, a potential source of functionalized hydroperoxides in the atmosphere. ACS Earth Space Chem. 2017, 1, 664–672. [Google Scholar] [CrossRef]
- Zhao, R.; Kenseth, C.M.; Huang, Y.; Dalleska, N.F.; Kuang, X.M.; Chen, J.; Paulson, S.E.; Seinfeld, J.H. Rapid aqueous-phase hydrolysis of ester hydroperoxides arising from Criegee intermediates and organic acids. J. Phys. Chem. A 2018, 122, 5190–5201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Nakanishi, S.; Saito, N.; Tsutsui, T.; Koizumi, A. Airborne perfluorooctanoate may be a substantial source contamination in Kyoto area, Japan. Bul. Environ. Contam. Toxicol. 2005, 74, 64–69. [Google Scholar] [CrossRef]
- Rauert, C.; Harner, T.; Schuster, J.K.; Eng, A.; Fillmann, G.; Castillo, L.E.; Fentanes, O.; Ibarra, M.V.; Miglioranza, K.S.B.; Rivadeneira, I.M.; et al. Atmospheric concentrations of New Persistent Organic Pollutants and Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) region. Environ. Sci. Technol. 2018, 52, 7240–7269. [Google Scholar] [CrossRef]
- Hough, A.M. Development of a two-dimensional global tropospheric model: Model chemistry. J. Geophys. Res. Atmos. 1991, 96, 7325–7362. [Google Scholar]
Simulation | Criegee Field Included (Y/N) | Total Species | Additional Species | No of Reactions | Additional Reactions |
---|---|---|---|---|---|
STOCH-Base | N | 231 | FTOH PFOA | 532 | FTOH + OH → PFOA |
STOCH-DE | N | 231 # | - | 532 | - |
STOCH-CI | Y | 248 | SCI’s * | 580 | SCIs formation and loss * PFOA + OH → “P1” PFOA + SCI → “P2” |
STOCH-HPE | Y | 249 | HPE | 582 | PFOA + SCI→HPE ** HPE+OH→CO2+HF HPE+OH→PFOA+HCOOH |
Simulation | STOCH-DE | STOCH-CI | STOCH-HPE |
---|---|---|---|
Emission (Gg year−1) | 5.000 (≈85%) | 5.000 (85%) | 5.000 (≈84%) |
Chemical Production (Gg year−1) | 0.881 (≈15%) | 0.881 (≈15%) | 0.925 (≈16%) |
Total Source (Gg year−1) | 5.881 | 5.881 | 5.925 |
OH removal (Gg year−1) | N/A | 0.442 (≈8%) | 0.442 (≈8%) |
Dry deposition (Gg year−1) | 1.191 (≈20%) | 1.114 (≈19%) | 1.114 (≈19%) |
Wet deposition (Gg year−1) | 4.637 (≈80%) | 4.170 (≈71%) | 4.170 (≈71%) |
Criegee removal (Gg year−1) | N/A | 0.104 (≈2%) | 0.104 (≈2%) |
Total Sink (Gg year−1) | 5.829 | 5.830 | 5.830 |
Global Burden (Gg) | 0.053 | 0.046 | 0.047 |
Lifetime (days) | 3.3 | 2.9 | 2.9 |
Yield of PFOA Reformation Reaction | PFOA Global Burden (Gg) |
---|---|
20% | 0.0464 |
50% | 0.0466 |
80% | 0.0468 |
100% | 0.0469 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, R.; Khan, M.A.H.; Chhantyal-Pun, R.; Orr-Ewing, A.J.; Percival, C.J.; Taatjes, C.A.; Shallcross, D.E. Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere 2020, 11, 407. https://doi.org/10.3390/atmos11040407
Holland R, Khan MAH, Chhantyal-Pun R, Orr-Ewing AJ, Percival CJ, Taatjes CA, Shallcross DE. Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere. 2020; 11(4):407. https://doi.org/10.3390/atmos11040407
Chicago/Turabian StyleHolland, Rayne, M. Anwar H. Khan, Rabi Chhantyal-Pun, Andrew J. Orr-Ewing, Carl J. Percival, Craig A. Taatjes, and Dudley E. Shallcross. 2020. "Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model" Atmosphere 11, no. 4: 407. https://doi.org/10.3390/atmos11040407
APA StyleHolland, R., Khan, M. A. H., Chhantyal-Pun, R., Orr-Ewing, A. J., Percival, C. J., Taatjes, C. A., & Shallcross, D. E. (2020). Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere, 11(4), 407. https://doi.org/10.3390/atmos11040407