A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms
Abstract
:1. Introduction
2. Synoptic Analysis
3. Model and Simulation Design
4. Results and Discussion
4.1. Validation
4.2. Overall Characteristics of the Simulated Winds
4.3. Downslope Windstorm (Yangyang)
4.4. Gap Winds (Jangjeon)
4.5. Association with Planetary Boundary Layer (Uljin)
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.-L. Mesoscale Dynamics; Cambridge University Press: Cambridge, UK, 2007; p. 630. [Google Scholar]
- Durran, D.R. Mountain waves and downslope winds. In Atmospheric Processes over Complex Terrain; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1990; Volume 23, pp. 59–81. [Google Scholar]
- Long, R.R. Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus 1953, 5, 42–58. [Google Scholar] [CrossRef] [Green Version]
- Eliassen, A.; Palm, E. On the transfer of energy in stationary mountain waves. Geofys. Publ. 1960, 22, 1–23. [Google Scholar]
- Klemp, J.B.; Lilly, D.R. The dynamics of wave-induced downslope winds. J. Atmos. Sci. 1975, 32, 320–339. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.L.; Peltier, W.R. Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci. 1984, 41, 3122–3134. [Google Scholar] [CrossRef]
- Reed, T.R. Gap winds of the Strait of Juan de Fuca. Mon. Weather Rev. 1931, 59, 373–376. [Google Scholar] [CrossRef]
- Colle, B.A.; Mass, C.F. High-resolution observations and numerical simulations of easterly gap flow through the Strait of Juan de Fuca on 9–10 December 1995. Mon. Weather Rev. 2000, 128, 2398–2422. [Google Scholar] [CrossRef]
- Sharp, J.; Mass, C. Columbia Gorge gap flow: Insights from observational analysis and ultra-high-resolution simulation. Bull. Am. Meteorol. Soc. 2002, 83, 1757–1762. [Google Scholar] [CrossRef]
- Decker, S.G.; Robinson, D.A. Unexpected high winds in northern New Jersey: A downslope windstorm in modest topography. Weather Forecast. 2011, 26, 902–921. [Google Scholar] [CrossRef]
- Ágústsson, H.; Ólafsson, H. The bimodal downslope windstorms at Kvísker. Meteorol. Atmos. Phys. 2012, 116, 27–42. [Google Scholar] [CrossRef]
- Mofidi, A.; Soltanzadeh, I.; Yousefi, Y.; Zarrin, A.; Soltani, M.; Samakosh, J.M.; Azizi, G.; Miller, S.T.K. Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005. Nat. Hazards 2015, 75, 2489–2518. [Google Scholar] [CrossRef]
- Cao, Y.; Fovell, R.G. Downslope windstorms of San Diego County. Part I: A case study. Mon. Weather Rev. 2016, 144, 529–552. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Moiseenko, K.B.; Toropov, P.A. Hydraulic and wave aspects of Novorossiysk Bora. Pure Appl. Geophys. 2018, 175, 3741–3757. [Google Scholar] [CrossRef]
- Tollinger, M.; Gohm, A.; Jonassen, M.O. Unravelling the March 1972 northwest Greenland windstorm with high-resolution numerical simulations. Q. J. R. Meteorol. Soc. 2019, 145, 3409–3431. [Google Scholar] [CrossRef] [Green Version]
- Vosper, S.B. Inversion effects on mountain lee waves. Q. J. R. Meteorol. Soc. 2004, 130, 1723–1748. [Google Scholar] [CrossRef]
- Lee, J.G. A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area. J. Environ. Sci. 2003, 12, 1245–1254, (In Korean with English Abstract). [Google Scholar]
- Jang, W.; Chun, H.-Y. Severe downslope windstorms of Gangneung in the springtime. Atmosphere 2008, 18, 207–224, (In Korean with English Abstract). [Google Scholar]
- Lee, J.G.; In, S.-R. A numerical sensitivity experiment of the downslope windstorm over the Yeongdong region in relation to the inversion layer of temperature. Atmosphere 2009, 19, 331–344, (In Korean with English Abstract). [Google Scholar]
- Korea Meteorological Administration. Meteorological Information Portal Service System Disaster Prevention. Available online: https://afso.kma.go.kr (accessed on 22 November 2019).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Technical Report TN-475+STR; NCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A.D. Hole-Filled SRTM for the Globe: Version 4: Data Grid; CGIAR Consortium for Spatial Information: Washington, DC, USA, 2008. [Google Scholar]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting, 16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.B.; Durran, D.R. Numerical modelling of Bora winds. Meteorol. Atmos. Phys. 1987, 36, 215–227. [Google Scholar] [CrossRef]
- Smith, C.M.; Skyllingstad, E.D. Effects of inversion height and surface heat flux on downslope windstorms. Mon. Weather Rev. 2011, 139, 3750–3764. [Google Scholar] [CrossRef] [Green Version]
- Durran, D.R. Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci. 1986, 43, 2527–2543. [Google Scholar] [CrossRef]
- Houghton, D.D.; Kasahara, A. Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math. 1968, 21, 1–23. [Google Scholar] [CrossRef]
- Overland, J.E.; Walter, B.A., Jr. Gap winds in the Strait of Juan de Fuca. Mon. Weather Rev. 1981, 109, 2221–2233. [Google Scholar] [CrossRef] [Green Version]
- Mass, C.F.; Businger, S.; Albright, M.D.; Tucker, Z.A. A windstorm in the lee of a gap in a coastal mountain barrier. Mon. Weather Rev. 1995, 123, 315–331. [Google Scholar] [CrossRef] [Green Version]
- Armi, L.; Mayr, G.J. Continuously stratified flows across an Alpine crest with a pass: Shallow and deep föhn. Q. J. R. Meteorol. Soc. 2007, 133, 459–477. [Google Scholar] [CrossRef]
- Ohashi, Y.; Terao, T.; Shigeta, Y.; Ohsawa, T. In situ observational research of the gap wind “Hijikawa-Arashi” in Japan. Meteorol. Atmos. Phys. 2015, 127, 33–48. [Google Scholar] [CrossRef]
- Jiang, Q.; Doyle, J.D.; Smith, R.B. Interaction between trapped waves and boundary layers. J. Atmos. Sci. 2006, 63, 617–633. [Google Scholar] [CrossRef]
- Smith, R.B.; Jiang, Q.; Doyle, J.D. A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci. 2006, 63, 774–781. [Google Scholar] [CrossRef]
- Smith, R.B. Interacting mountain waves and boundary layers. J. Atmos. Sci. 2007, 64, 594–607. [Google Scholar] [CrossRef]
- Jiang, Q.; Doyle, J.D. On the diurnal variation of mountain waves. J. Atmos. Sci. 2008, 65, 1360–1377. [Google Scholar] [CrossRef]
- Peng, M.S.; Thompson, W.T. Some aspects of the effect of surface friction on flows over mountains. Q. J. R. Meteorol. Soc. 2003, 129, 2527–2557. [Google Scholar] [CrossRef]
- Sauer, J.A.; Muñoz-Esparza, D.; Canfield, J.M.; Costigan, K.R.; Linn, R.R.; Kim, Y.-J. A large-eddy simulation study of atmospheric boundary layer influence on stratified flows over terrain. J. Atmos. Sci. 2016, 73, 2615–2632. [Google Scholar] [CrossRef]
- Worthington, R.M. Existence of large turbulent eddies in the early-morning boundary layer acting as an effective mountain to force mountain waves. Bound.-Layer Meteorol. 2016, 159, 161–172. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Seo, J.M.; Baik, J.-J.; Park, S.-B.; Han, B.-S. A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms. Atmosphere 2020, 11, 431. https://doi.org/10.3390/atmos11040431
Lee J, Seo JM, Baik J-J, Park S-B, Han B-S. A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms. Atmosphere. 2020; 11(4):431. https://doi.org/10.3390/atmos11040431
Chicago/Turabian StyleLee, Joohyun, Jaemyeong Mango Seo, Jong-Jin Baik, Seung-Bu Park, and Beom-Soon Han. 2020. "A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms" Atmosphere 11, no. 4: 431. https://doi.org/10.3390/atmos11040431
APA StyleLee, J., Seo, J. M., Baik, J. -J., Park, S. -B., & Han, B. -S. (2020). A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms. Atmosphere, 11(4), 431. https://doi.org/10.3390/atmos11040431