Snowpack as Indicators of Atmospheric Pollution: The Valday Upland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sample Collection and Preparation
2.2.1. Chemical Analysis of Samples
- (1)
- pH, electrical conductivity: potentiometric determination;
- (2)
- Permanganate index: titrimetric determination;
- (3)
- Alkalinity: potentiometric titration using the Gran method;
- (4)
- Color: spectrophotometric determination;
- (5)
- Nitrates and nitrites: spectrophotometric determination with Griess reagent;
- (6)
- Ammonium: spectrophotometric determination with Nessler reagent;
- (7)
- Phosphates: spectrophotometric determination of the P–Mo complex in an acidic medium;
- (8)
- Anionic–cationic macro-composition (calcium, magnesium, potassium, sodium, ammonium ions; sulfates; chlorides; fluorides; nitrates; nitrites; and ortho-/polyphosphates) using ion chromatography;
- (9)
- Copper, lead, cadmium, nickel, cobalt, and iron ions using stripping voltammetry; and alkaline-earth metals, aluminum, copper, nickel, cadmium, and cobalt using the atomic absorption method.
2.2.2. Membrane Filtration and Ion Exchange Separation of Aqueous Samples
2.2.3. Statistical Analysis
3. Results and Discussion
3.1. Key Seasonal and Physicochemical Parameters
3.1.1. Influence of Temperature Fluctuations on the Snowpack
3.1.2. Physicochemical Features of Snow and Snow Water
3.1.3. Content of Organic Substances and Related Parameters
3.1.4. Biogenic Elements (N and P)
3.1.5. Sulfates and Chlorides
3.1.6. Aluminum, Iron, and Manganese
3.1.7. Heavy Metal Ions
3.2. Statistical Analysis of the Snow Chemical Composition
3.2.1. Snow Buffer Capacity (ANC)
3.2.2. Metal Speciation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Finkel, R.C.; Langway, C.C., Jr.; Clausen, H.B. Changes in precipitation chemistry at Dye 3, Greenland. J. Geophys. Res. 1986, 91, 9849–9855. [Google Scholar] [CrossRef]
- Goto-Azuma, K.; Koerner, R.M.; Demuth, M.N.; Watanabe, O. Seasonal and spatial variations of snow chemistry on Mount Logan, Yukon, Canada. Ann. Glaciol. 2006, 43, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Whitlow, S.; Mayewski, P.A.; Dibb, J.E. A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit, Greenland. Atmos. Environ. 1992, 26A, 2045–2054. Available online: https://www.sciencedirect.com/science/article/abs/pii/0960168692900894 (accessed on 23 March 2020). [CrossRef]
- Walker, T.R.; Young, S.D.; Crittenden, P.D.; Zhang, H. Anthropogenic metal enrichment of snow and soil in northeastern European Russia. Environ. Pollut. 2003, 121, 11–21. [Google Scholar] [CrossRef]
- Adil, E. Monitoring of heavy metals in urban snow as indicator of atmosphere pollution. Int. Assoc. Environ. Anal. Chem. 2002, 82, 37–45. [Google Scholar] [CrossRef]
- Sorokina, O.; Kosheleva, N.; Kasimov, N.; Golovanov, D.; Bazha, S.; Dorzhgotov, D.; Enkh-Amgalan, S. Heavy metals in the air and snow cover of Ulan Bator. Geogr. Nat. Res. 2013, 34, 291–301. Available online: https://link.springer.com/article/10.1134/S1875372813030153 (accessed on 23 March 2020).
- Siudek, P.; Frankowski, M.; Siepak, J. Trace element distribution in the snow cover from an urban area in central Poland. Environ. Monit. Assess. 2015, 187, 225. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, Y.N. General plan of the municipality Valday urban settlement of the Valday district of the Novgorod region. Natural conditions and environmental assessment. Substantiation materials. Veliky Novgorod 2012, 2, 13–23. [Google Scholar]
- Kline, K.M.; Eshleman, K.N.; Garlitz, J.E.; U’Ren, S.H. Long-term response of surface water acid neutralizing capacity in a central Appalachian (USA) river basin to declining acid deposition. Atmos. Environ. 2016, 146, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Moiseenko, T.I. Assessment of critical loads of acid fallout for surface waters. Water Resour. 2002, 29, 292–298. [Google Scholar] [CrossRef]
- Fortescue, J.A. Landscape geochemistry: Retrospect and prospect—1990. Appl. Geochem. 1992, 7, 13–18. [Google Scholar] [CrossRef]
- Shkinev, V.M. On-line, multi-stage membrane systems forseparating natural-water components and suspendedsolid materials. Membr. Technol. 2001, 134, 8–10. [Google Scholar] [CrossRef]
- Rodyushkin, I.V. The Main Laws of the Distribution of Metals by Forms in the Surface Waters of the Kola North. Ph.D., Thesis, Institute of Ozerovedeniya, Saint Petersburg, Russia, 1995. [Google Scholar]
- Boutron, C.F.; Candelone, J.P.; Hong, S. Greenland snow and ice cores: Unique archives of the large-scale pollution of the Northern Hemisphere for lead and other heavy metals. Sci. Total Environ. 1995, 160–161, 233–241. [Google Scholar] [CrossRef]
- Candelone, J.-P.; Jaffrezo, J.-L.; Hong, S.; Davidson, C.I.; Boutror, C.F. Seasonal variations in heavy metals concentrations in present day Greenland snow. Sci. Total Environ. 1996, 193, 101–110. [Google Scholar] [CrossRef]
- Planchon Frédéric, A.M.; Boutron, C.F.; Barbante, C.; Cozzi, G.; Gaspari, V.; Wolff, E.W.; Ferrari, C.P.; Cescon, P. Changes in heavy metals in Antarctic snow from Coats Landsince the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 2002, 200, 207–222. [Google Scholar] [CrossRef]
- Kuramoto, K.; Goto-Azuma, K.; Hirabayashi, M.; Miyake, T. Seasonal variations of snow chemistry at NEEM, Greenland. Ann. Glaciol. 2011, 52, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Pristova, T.A.; Vasilevich, M.I. Chemical Composition of Snow Cover in MiddleTaiga Forest Ecosystems in the Komi Republic. Geochem. Int. 2011, 49, 199–206. [Google Scholar] [CrossRef]
- Nikonov, V.V.; Lukina, N.V.; Bezel, V.S.; Belskiy, E.A.; Bespalova, A.Y.; Golovchenko, A.V.; Gorbacheva, T.T.; Dobrovolskaya, T.G.; Dobrovolsky, V.V.; Zukert, N.V.; et al. Trace Elements in Boreal Forests; Nauka: Moscow, Russia, 2004; p. 616. [Google Scholar]
- Nawrota, A.B.; Krzyszto, M.; Bartłomie, L.; Pakszys, P.; Głowac, P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen. Polar Sci. 2016, 10, 249–261. [Google Scholar] [CrossRef]
- Kashulina, G.; de Caritat, P.; Reimann, C. Snow and rain chemistry around the "Severonikel" industrial complex, NW Russia: Current status and retrospective analysis. Atmos. Environ. 2014, 89, 672–682. [Google Scholar] [CrossRef]
- Revazyan, R.G.; Babayan, E.G.; Khalifyan, M.A. The chemical composition of runoff water from trees in the forests of Dilijan Reserve. Biol. J. Armen. 1983, 36, 219–222. [Google Scholar]
- Wang, X.; Pu, W.; Zhang, X.; Ren, Y.; Huang, J. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China. Atmos. Environ. 2015, 114, 57–65. [Google Scholar] [CrossRef]
- Hegg, D.A.; Warren, S.G.; Grenfell, T.C.; Doherty, S.J.; Clarke, A.D. Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmos. Chem. Phys. 2010, 10, 10923–10938. [Google Scholar] [CrossRef] [Green Version]
- Wolff, E.W.; Peel, D.A. Concentrations of cadmium, copper, lead and zinc in snow from near Dye 3 in South Greenland. Ann. Glaciol. 2015, 12, 293–296. Available online: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1017%2FS0260305500004420 (accessed on 23 March 2020).
- Wolff, E.W.; Peel, D.A. Concentrations of cadmium, copper, lead and zinc in snow from near Dye 3 in South Greenland. Ann. Glaciol. 1988, 10, 193–197. Available online: http://nora.nerc.ac.uk/id/eprint/522182/ (accessed on 23 March 2020). [CrossRef]
- Kuramoto, T.; Goto-Azuma, K.; Hirabayashi, M.; Miyake, T.; Hideaki, M.; Dahl-Jensen, D.; Steffensen, J.P. Seasonal variations of snow chemistry at NEEM, Greenland. Geology 2011, 52, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, A.; Österlund, H.; Marsalek, J.; Viklander, M. Laboratory melting of late-winter urban snow samples: The magnitude and dynamics of releases of heavy metals and PAHs. Water Air Soil Pollut. 2019, 230, 182–202. [Google Scholar] [CrossRef] [Green Version]
- Vasilevich, M.I.; Beznosikov, V.A.; Kondratenok, B.M. The chemical composition of the snow cover in taiga zone of the Komi Republic. Water Resour. 2011, 38, 494–506. [Google Scholar] [CrossRef]
- Review of Environmental Pollution in the Russian Federation for; URLS Roshydrometp: Moscow, Russia, 2018; p. 162.
- Suzuki, K. Spatial distribution of chloride and sulfate in the snow cover in Sapporo, Japan. Atmos. Environ. (1967) 1987, 21, 1773–1778. [Google Scholar] [CrossRef]
- Buffle, J.; Leeuwen, H.P.v. The use of filtration and ultrafiltration for size fractionation of aquatic paticles colloids and macromolecules. Environ. Part. 1992, 1, 171–230. [Google Scholar]
Parameter | Snow Sampling Point | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
V solution, L | 4.7 | 4.9 | 5.1 | 4.1 | 5.4 | 5.2 |
3.0–5.5 | 4.3–5.3 | 4.7–5.3 | 3.0–5.1 | 4.5–6.5 | 4.6–6.2 | |
T snow, °C | 0.31 | 0.18 | 0.25 | 0.74 | 0.87 | 1.25 |
−0.70–0.67 | −0.70–−0.61 | −0.40–0.60 | 0.10–2.10 | 0.20–2.0 | 1.10–4.00 | |
pH solution | 6.13 | 5.98 | 6.13 | 5.93 | 6.93 | 6.40 |
5.76–6.50 | 5.5–5.73 | 5.83–6.65 | 5.70–5.85 | 6.40–7.44 | 6.37–6.82 | |
pH snow | 4.95 | 5.15 | 5.05 | 4.75 | 6.76 | 5.80 |
3.96–6.50 | 4.26–6.50 | 4.00–6.65 | 4.50–5.00 | 5.86–7.44 | 4.16–6.69 | |
Color, ° Cr/Co | 40.3 | 33.53 | 25.87 | 30.80 | 29.00 | 24.68 |
33.4–47.74 | 29.78–39.21 | 17.20–29.78 | 30.00–31.27 | 27.60–30.44 | 13.65–29.12 | |
Turbidity, ° Farm. | 12.00 | 8.20 | 4.90 | 4.60 | 5.99 | 4.43 |
3.00–17.27 | 6.96–9.75 | 3.00–6.40 | 2.60–6.60 | 2.92–8.5 | 1.50–7.73 | |
Cond, µS/cm | 9.9 | 8.6 | 7.6 | 8.15 | 10.4 | 9.81 |
8.1–14 | 7.3–13.1 | 4.9–12 | 8–8.3 | 6.5–15.6 | 4.1–11.3 | |
Si, µg/L | 42.2 | 38.1 | 28.7 | 26.4 | 49.5 | 48.8 |
12–69 | 21–50 | 19–40 | 20–33 | 40–57 | 15–60 | |
Alk, µeq/L | 37 | 18.5 | 21 | 15 | 31 | 28 |
3–60 | 3.2–37 | 3.5–40 | 4–20 | 5–64 | 6–50 | |
Ca, µg/L | 664.5 | 510.5 | 438 | 358 | 575 | 652 |
439–666 | 332–591 | 385–505 | 333–377 | 271–950 | 365–937 | |
Mg, µg/L | 94.7 | 85 | 55 | 62 | 86 | 65 |
68–107 | 48–121 | 30–94 | 50–75 | 44–121 | 32–100 | |
Fe, µg/L | 53 | 22.2 | 17.3 | 28.1 | 45.5 | 25.5 |
16.3–92.5 | 10.4–31.2 | 0–18.0 | 17–39 | 18–84 | 6.7–42.0 | |
Al, µg/L | 28 | 21 | 13.5 | 18.7 | 37.8 | 17.5 |
17–33 | 19–25 | 9–19 | 14–23 | 20–61 | 7.0–22.0 | |
Cu, µg/L | 9.3 | 18.4 | 5.1 | 4.7 | 3.3 | 2.65 |
1.8–20 | 1.5–63 | 2–11 | 3.6–6 | 1.1–6 | 1.2–3.3 | |
Pb, µg/L | 2.6 | 1.9 | 2.34 | 1.6 | 1.6 | 2.34 |
1.2–4.3 | 1.4–2.3 | 1.0–4.0 | 1.4–1.7 | 1.0–2.5 | 1.8–3.4 | |
Ni, µg/L | 1.1 | 5.8 | 1.1 | 2.4 | 2.4 | 1.7 |
0.5–2.15 | 0.8–19 | 0.7–1.8 | 0.6–4.2 | 0.4–5.0 | 1.2–3.0 | |
Cd, µg/L | 0.07 | 0.06 | 0.07 | 0.06 | 0.06 | 0.05 |
0.03–0.1 | 0.06–0.11 | 0.03–0.13 | 0.05–0.06 | 0.06–0.07 | 0.04–0.06 | |
Zn, µg/L | 25.6 | 43.5 | 22 | 25 | 41 | 24 |
15–34 | 18–106 | 19–26 | 19–31 | 33–56 | 13–36 | |
Mn, µg/L | 72.6 | 51.2 | 8.6 | 20 | 6.7 | 2.7 |
24–116 | 17.6–94.5 | 4.3–16 | 7–33 | 4.8–10.8 | 2.1–3.6 | |
Cl, mg/L | 0.55 | 0.39 | 0.53 | 0.45 | 0.55 | 0.63 |
0.15–1.3 | 0.32–0.57 | 0.23–0.80 | 0.27–0.57 | 0.23–0.85 | 0–1.8 | |
SO4, mg/L | 0.6 | 0.75 | 0.40 | 0.60 | 0.5 | 0.45 |
0.64–0.68 | 0.37–1.6 | 0.30–0.57 | 0.41–0.8 | 0.22–0.65 | 0.22–0.89 | |
P, µg P/L | 40 | 35 | 12 | 15 | 21 | 32 |
5.3–64.0 | 0.37–1.6 | 3.0–19 | 5.0–56 | 7.0–35 | 1.8–80 | |
N, µg N/L | 43 | 37 | 42 | 28 | 39 | 44 |
30–70 | 30–60 | 25–60 | 20–30 | 20–70 | 20–70 | |
ANC, µeq/L | −7.12 | −2.1 | −1.15 | −7.6 | −11 | −3.7 |
−16–3.0 | −17–11 | −9–2.5 | −9–−5 | −4–−20 | −2–2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M.; Moiseenko, T.; Baranov, D. Snowpack as Indicators of Atmospheric Pollution: The Valday Upland. Atmosphere 2020, 11, 462. https://doi.org/10.3390/atmos11050462
Dinu M, Moiseenko T, Baranov D. Snowpack as Indicators of Atmospheric Pollution: The Valday Upland. Atmosphere. 2020; 11(5):462. https://doi.org/10.3390/atmos11050462
Chicago/Turabian StyleDinu, Marina, Tatyana Moiseenko, and Dmitry Baranov. 2020. "Snowpack as Indicators of Atmospheric Pollution: The Valday Upland" Atmosphere 11, no. 5: 462. https://doi.org/10.3390/atmos11050462
APA StyleDinu, M., Moiseenko, T., & Baranov, D. (2020). Snowpack as Indicators of Atmospheric Pollution: The Valday Upland. Atmosphere, 11(5), 462. https://doi.org/10.3390/atmos11050462