Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sensor Node, AGO
2.2. Field Calibration of the Sensor Node
2.3. Lab Testing of the Air Filtration System
2.4. Field Study Design
3. Results and Discussion
3.1. Driver Exposure Campaigns
3.1.1. NO Concentrations
3.1.2. PM Concentrations
3.1.3. CO Concentrations
3.1.4. Impacts of AFS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AFS | Air Filtration System |
AGO | AirNode Generation One |
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
Avg. | Average |
CO | Carbon monoxide |
CO | Carbon dioxide |
DOAJ | Directory of open access journals |
HVAC | Heating, ventilation, and air conditioning |
Max | Maximum |
MDPI | Multidisciplinary digital publishing institute |
NDIR | Non-dispersive infrared |
NO | Nitrogen dioxide |
NO | Oxides of nitrogen |
PM | Particulate matter |
ppb | Parts per billion |
ppm | Parts per million |
RH | Relative humidity |
SD | Standard deviation |
SVOC | Semi-volatile organic compound |
T | Temperature |
VOC | Volatile organic compound |
Appendix A
Appendix A.1. Time Series and Correlation Plots
Appendix A.2. Daily Average In-Vehicle Concentrations during All Campaigns
AGO | Date | Filter | PM (SD) | PM (SD) | NO (SD) | CO (SD) | T (SD) | RH (SD) | |
---|---|---|---|---|---|---|---|---|---|
Campaign 1 | 104 | 12 August | OFF | 5.1 (2.0) | 10.5 (2.9) | 71.3 (24.2) | 555.9 (129.2) | 31.4 (1.8) | 36.6 (5.7) |
13 August | OFF | 3.1 (1.6) | 7.2 (3.5) | 41.9 (24.5) | 493.2 (46.2) | 41.7 (3.9) | 13.1 (3.6) | ||
14 August | ON | 2.5 (1.5) | 3.9 (2.9) | 52.0 (39.4) | 487.9 (49.6) | 36.7 (2.5) | 31.9 (3.9) | ||
15 August | ON | 2.8 (1.2) | 4.8 (2.0) | 51.9 (29.2) | 472.2 (49.3) | 39.7 (3.4) | 18.0 (3.9) | ||
112 | 12 August | OFF | 8.0 (2.8) | 19.2 (6.7) | 62.1 (19.7) | 430.4 (60.6) | 29.3 (0.9) | 39.1 (3.5) | |
13 August | OFF | 5.6 (3.2) | 12.8 (6.7) | 57.1 (40.5) | 486.4 (41.0) | 33.9 (1.6) | 20.7 (3.7) | ||
14 August | ON | 5.6 (3.5) | 11.4 (7.5) | 52.4 (26.0) | 417.2 (63.9) | 30.2 (1.0) | 46.2 (2.0) | ||
15 August | ON | 5.8 (2.6) | 12.7 (5.9) | 46.7 (34.9) | 497.0 (49.5) | 34.5 (1.8) | 24.5 (2.8) | ||
114 | 14 August | OFF | 3.2 (2.5) | 7.7 (5.8) | 150.9 (91.8) | 459.0 (56.3) | 29.5 (1.6) | 49.1 (2.8) | |
15 August | OFF | 3.2 (2.1) | 6.9 (4.2) | 125.8 (83.2) | 460.0 (41.1) | 32.8 (1.9) | 28.9 (2.6) | ||
12 August | ON | 7.7 (5.0) | 20.6 (12.0) | 106.7 (89.9) | 507.5 (98.5) | 27.5 (0.7) | 44.9 (3.3) | ||
13 August | ON | 3.3 (2.6) | 7.9 (6.5) | 114.8 (104.7) | 465.0 (49.7) | 32.7 (2.0) | 24.9 (5.3) | ||
Campaign 2 | 101 | 9 September | OFF | 3.2 (2.5) | 8.4 (7.6) | 52.7 (17.8) | 1014.6 (370.3) | 30.9 (2.3) | 34.8 (3.9) |
10 September | OFF | 4.2 (2.0) | 8.7 (3.9) | 79.0 (31.2) | 915.9 (279.1) | 32.8 (3.1) | 29.4 (5.6) | ||
11 September | ON | 2.5 (0.5) | 7.5 (2.5) | 60.2 (26.5) | 933.5 (272.6) | 30.5 (3.3) | 40.1 (2.9) | ||
12 September | ON | 2.3 (0.9) | 6.0 (3.1) | 46.2 (22.5) | 684.3 (126.0) | 30.9 (4.1) | 39.4 (7.7) | ||
104 | 12 September | OFF | 2.1 (0.6) | 5.5 (2.0) | 44.9 (22.6) | 563.3 (107.3) | 35.7 (5.2) | 30.5 (7.8) | |
9 September | ON | 2.0 (0.5) | 4.9 (2.0) | 47.8 (18.9) | 1099.5 (645.8) | 32.9 (2.3) | 30.4 (3.7) | ||
10 September | ON | 5.2 (2.5) | 9.3 (4.3) | 48.1 (25.0) | 827.2 (354.0) | 34.6 (4.6) | 26.7 (6.7) | ||
109 | 9 September | ON | 2.4 (1.3) | 4.9 (2.5) | 54.0 (21.7) | 1235.9 (651.5) | 36.0 (2.9) | 27.2 (3.2) | |
10 September | ON | 3.9 (2.7) | 6.6 (4.0) | 67.4 (25.7) | 1240.8 (615.7) | 32.6 (4.7) | 27.8 (7.6) | ||
11 September | ON | 2.4 (0.8) | 6.6 (4.1) | 37.7 (24.9) | 765.5 (225.9) | 32.2 (5.2) | 29.9 (6.1) | ||
12 September | ON | 1.7 (0.6) | 4.6 (2.3) | 52.8 (22.8) | 762.3 (232.7) | 36.6 (4.7) | 30.7 (7.6) | ||
112 | 10 September | OFF | 5.4 (2.7) | 11.0 (3.8) | 85.7 (49.4) | 529.6 (109.0) | 30.9 (5.9) | 34.2 (10.1) | |
11 September | OFF | 3.4 (1.2) | 11.7 (3.2) | 113.9 (34.3) | 475.9 (69.8) | 28.7 (4.2) | 39.9 (4.2) | ||
12 September | OFF | 3.0 (1.6) | 9.8 (4.7) | 101.0 (42.9) | 466.5 (53.5) | 28.8 (5.1) | 43.2 (8.3) | ||
114 | 9 September | OFF | 1.7 (0.5) | 3.8 (1.4) | 74.0 (25.9) | 803.6 (451.1) | 32.1 (3.2) | 35.0 (4.1) | |
10 September | OFF | 3.6 (1.9) | 7.0 (3.6) | 71.8 (33.3) | 704.16 (256.7) | 34.0 (3.8) | 30.2 (5.9) | ||
11 September | ON | 1.7 (1.1) | 5.1 (2.6) | 65.4 (27.1) | 741.0 (253.1) | 32.4 (3.9) | 39.3 (5.2) | ||
12 September | ON | 1.1 (0.4) | 3.3 (1.5) | 55.4 (29.9) | 594.9 (135.0) | 37.1 (5.6) | 33.0 (8.5) | ||
109 | 16 September | OFF | 6.4 (3.6) | 8.0 (3.9) | 55.2 (34.8) | 724.4 (163.6) | 31.6 (3.1) | 35.5 (8.4) | |
17 September | OFF | 2.9 (1.4) | 6.4 (3.4) | 60.0 (31.6) | 793.8 (370.8) | 30.2 (3.6) | 27.0 (8.1) | ||
18 September | ON | 3.2 (2.1) | 7.4 (4.1) | 67.9 (37.3) | 663.0 (234.1) | 32.0 (4.6) | 21.3 (4.9) | ||
19 September | ON | 3.2 (1.3) | 8.0 (2.6) | 57.5 (35.6) | 775.8 (455.2) | 35.0 (4.9) | 22.9 (8.0) | ||
114 | 18 September | OFF | 2.5 (1.6) | 9.3 (5.3) | 36.0 (23.3) | 799.8 (349.5) | 30.1 (2.7) | 28.1 (3.6) | |
19 September | OFF | 3.4 (1.6) | 11.9 (5.0) | 50.2 (30.3) | 876.7 (438.1) | 26.7 (7.9) | 30.7 (5.5) | ||
16 September | ON | 7.3 (3.8) | 10.3 (5.9) | 30.9 (21.8) | 686.2 (228.5) | 30.3 (1.6) | 44.0 (3.9) | ||
17 September | ON | 3.0 (2.0) | 9.4 (3.3) | 29.9 (21.7) | 795.1 (178.3) | 27.7 (3.9) | 32.9 (10.2) | ||
Campaign 3 | 104 | 23 September | ON | 1.2 (0.6) | 2.4 (1.3) | 41.1 (22.5) | 833.7 (335.1) | 35.1 (2.7) | 29.1 (5.5) |
104 | 16 October | OFF | 2.6 (0.6) | 7.0 (2.0) | 86.0 (31.7) | 981.3 (414.4) | 31.5 (3.0) | 34.0 (10.6) | |
17 October | OFF | 2.0 (0.6) | 4.5 (2.0) | 54.0 (42.9) | 1049.4 (370.7) | 31.8 (2.1) | 29.6 (3.8) | ||
15 October | ON | 2.3 (1.1) | 4.6 (2.6) | 40.1 (21.5) | 872.6 (351.0) | 32.8 (1.0) | 27.8 (3.7) | ||
114 | 29 September | OFF | 1.0 (0.4) | 3.4 (2.1) | 107.6 (69.6) | 899.9 (304.6) | 28.1 (3.8) | 54.9 (9.7) | |
30 September | OFF | 1.2 (0.5) | 3.7 (2.7) | 96.0 (61.7) | 1271.2 (294.4) | 28.8 (2.6) | 44.6 (4.8) | ||
23 September | ON | 2.4 (0.4) | 10.5 (2.0) | 74.6 (38.6) | 832.7 (290.7) | 31.2 (1.8) | 38.5 (1.9) | ||
24 September | ON | 2.8 (1.1) | 10.4 (5.2) | 70.2 (85.5) | 855.7 (353.1) | 28.2 (3.4) | 56.1 (9.3) | ||
114 | 10 October | OFF | 2.1 (1.0) | 5.9 (2.9) | 30.9 (26.2) | 1302.2 (584.5) | 30.6 (1.8) | 37.6 (4.3) | |
11 October | OFF | 1.7 (1.0) | 4.1 (2.6) | 65.4 (27.1) | 931.8 (31.0) | 31.1 (2.1) | 41.8 (4.4) | ||
7 October | ON | 1.1 (0.9) | 3.1 (2.2) | 44.9 (24.1) | 1214.9 (578.4) | 29.0 (2.0) | 42.8 (4.7) | ||
9 October | ON | 0.9 (0.7) | 2.8 (1.6) | 33.5 (25.3) | 1218.6 (501.8) | 30.6 (1.4) | 32.6 (2.9) |
References
- Int Panis, L.; De Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to Particulate Matter in Traffic: A Comparison of Cyclists and Car Passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Xu, B.; Chen, X.; Xiong, J. Air Quality Inside Motor Vehicles’ Cabins: A Review. Indoor Built Environ. 2016, 27, 452–465. [Google Scholar] [CrossRef]
- Ribeiro, A.; Baquero, O.; de Freitas, C.; Neto, F.; Cardoso, M.; Latorre, M.; Nardocci, A. Incidence and Mortality Risk for Respiratory Tract Cancer in the City of São Paulo, Brazil: Bayesian Analysis of the Association with Traffic Density. Cancer Epidemiol. 2018, 56, 53–59. [Google Scholar] [CrossRef]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to Traffic-Related Air Pollution and Risk of Development of Childhood Asthma: A Systematic Review and Meta-Analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montreuil, A.; Tremblay, M.; Cantinotti, M.; Leclerc, B.S.; Lasnier, B.; Cohen, J.; McGrath, J.; O’Loughlin, J. Frequency and Risk Factors Related to Smoking in Cars with Children Present. Can. J. Public Health 2015, 106, 369–374. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air Pollution and Health Risks due to Vehicle Traffic. Science 2013, 4, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, D.; Siegel, J.; Spinhirne, J.; Webb, A.; McDonald-Buller, E. Characteristics of Cabin Air Quality in School Buses in Central Texas. Atmos. Environ. 2008, 42, 6453–6464. [Google Scholar] [CrossRef]
- van Wijnen, J.; Verhoeff, A.; Jans, H.; van Bruggen, M. The Exposure of Cyclists, Car Drivers and Pedestrians to Traffic-Related Air Pollutants. Int. Arch. Occup. Environ. Health 1995, 67, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Rank, J.; Folke, J.; Jespersen, P. Differences in Cyclists and Car Drivers Exposure to Air Pollution from Traffic in the City of Copenhagen. Science 2001, 279, 131–136. [Google Scholar] [CrossRef]
- Padró-Martínez, L.; Patton, A.P.; Trull, J.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile Monitoring of Particle Number Concentration and Other Traffic-Related Air Pollutants in a Near-Highway Neighborhood over the Course of a Year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Hankey, S.; Marshall, J. On-Bicycle Exposure to Particulate Air Pollution: Particle Number, Black Carbon, PM2.5, and Particle Size. Atmos. Environ. 2015, 122, 65–73. [Google Scholar] [CrossRef]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J. Impact of Bicycle Route Type on Exposure to Traffic-Related Air Pollution. Sci. Total. Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of Personal Exposure to Particulate Air Pollution during Commuting in European Cities—Recommendations and Policy Implications. Sci. Total. Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of Ambient Air Pollution According to Mode of Transport: A Systematic Review. Lancet Public Health 2017, 2, 23–34. [Google Scholar] [CrossRef] [Green Version]
- de Nazelle, A.; Bode, O.; Orjuela, J. Comparison of Air Pollution Exposures in Active vs. Passive Travel Modes in European Cities: A Quantitative Review. Environ. Int. 2017, 99, 151–160. [Google Scholar] [CrossRef]
- Zhu, Y.; Eiguren-Fernandez, A.; Hinds, W.; Miguel, A. In-cabin Commuter Exposure to Ultrafine Particles on Los Angeles freeways. Environ. Sci. Technol. 2007, 41, 2138–2145. [Google Scholar] [CrossRef]
- Kaminsky, J.; Gaskin, E.; Matsuda, M.; Miguel, A. In-cabin Commuter Exposure to Ultrafine Particles on Commuter Roads in and around Hong Kong’s Tseung Kwan O Tunnel. Aerosol Air Qual. Res. 2009, 9, 353–357. [Google Scholar] [CrossRef]
- Knibbs, L.; deDear, R.; Atkinson, S. Field Study of Air Change and Flow Rate in Six Automobiles. Indoor Air 2009, 19, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, L.; Petersen-Sonn, E.; Shen, Y.; Hertel, O.; Hong, Y.; Schmidt, J.; Johnson, M. Low-Cost Sensors for Indoor and Outdoor Pollution; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Snyder, E.; Watkins, T.; Solomon, P.; Thoma, E.; Williams, R.; Hagler, G.; Shelow, D.; Hindin, D.; Vasu, J.K.; Preuss, P. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Rai, A.; Kumar, P.; Pilla, F.; Skouloudis, A.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-User Perspective of Low-Cost Sensors for Outdoor Air Pollution Monitoring. Sci. Total Environ. 2017, 607, 691–705. [Google Scholar] [CrossRef] [Green Version]
- WHO. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications; Technical Report WMO-No. 1215; Review; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The Rise of Low-Cost Sensing for Managing Air Pollution in Cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shusterman, A.; Teige, V.; Turner, A.; Newman, C.; Kim, J.; Cohen, R. The Berkeley Atmospheric CO2 Observation Network: Initial Evaluation. Atmos. Chem. Phys. 2016, 16, 13449–13463. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Shusterman, A.; McDonald, B.; Teige, V.; Harley, R.; Cohen, R. Network Design for Quantifying Urban CO2 Emissions: Assessing Trade-Offs between Precision and Network Density. Atmos. Chem. Phys. 2016, 16, 13465–13475. [Google Scholar] [CrossRef] [Green Version]
- Steinle, S.; Reis, S.; Sabel, C. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total. Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawant, A.A.; Na, K.; Zhu, X.; K., C.; Butt, S.; Song, C.; Cocker, D.R. Characterization of PM2.5 and Selected Gas-Phase Compounds at Multiple Indoor and Outdoor Sites in Mira Loma, California. Atmos. Environ. 2004, 38, 6269–6278. [Google Scholar] [CrossRef]
- Laser PM2.5 Sensor Specification, SDS011; Technical Report Version V1.3; Data Sheet; Nova Fitness Co., Ltd.: Jinan, China, 2015.
- Van de Hulst, H. Light Scattering by Small Particles; Dover Publications, Inc.: New York, NY, USA, 1981. [Google Scholar]
- Liu, H.Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Genikomsakis, K.; Galatoulas, N.F.; Dallas, P.; Candanedo Ibarra, L.; Margaritis, D.; Ioakimidis, C. Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations. Sensors 2018, 18, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulot, F.; Russell, H.; Rezaei, M.; Johnson, M.; Ossont, S.; Morris, A.; Basford, P.; Easton, N.; Foster, G.; Loxham, M.; et al. Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution. Sensors 2020, 20, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budde, M.; Schwarz, A.; Müller, T.; Laquai, B.; Streibl, N.; Schindler, G.; Köpke, M.; Riedel, T.; Dittler, A.; Beigl, M. Potential and Limitations of the Low-Cost SDS011 Particle Sensor for Monitoring Urban Air Auality. ProScience 2018, 5, 6–12. [Google Scholar]
- Mukherjee, A.; Stanton, L.; Graham, A.; Roberts, P. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Guyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Bergin, M.; Johnson, K.; Tripathi, S.; Shirodkar, S.; Landis, M.; Sutaria, R.; Carlson, D. Field Evaluation of Low-Cost Particulate Matter Sensors in High and Low Concentration Environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sens. 2018, 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Alphasense. Technical Specification NO2 Sensor, NO2-B43F Nitrogen Dioxide Sensor 4-Electrode; Technical Report Version V1; Data sheet; Alphasense Ltd.: Braintree, UK, 2019. [Google Scholar]
- Cross, E.; Williams, L.; Lewis, D.; Magoon, G.; Onasch, T.; Kaminsky, M.; Worsnop, D.; Jayne, J. Use of Electrochemical Sensors for Measurement of Air Pollution: Correcting Interference Response and Validating Measurements. Atmos. Meas. Tech. 2017, 10, 3575. [Google Scholar] [CrossRef] [Green Version]
- Stetter, J.; Li, J. Amperometric Gas Sensors: A Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef]
- Mead, M.; Popoola, O.; Stewart, G.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.; McLeod, M.; Hodgson, T.; Dicks, J.; et al. The Use of Electrochemical Sensors for Monitoring Urban Air Quality in Low-Cost, High-Density Networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Westerdahl, D.; Ning, Z. Development and Evaluation of a Novel and Cost-Effective Approach for Low-Cost NO2 Sensor Drift Correction. Sensors 2017, 17, 1916. [Google Scholar] [CrossRef]
- Technical Specification CO2 and RH/T Sensor Module; Technical Report Version V1; Data sheet; Sensirion: Stäfa, Switzerland, 2018.
- Soares, A.; Catita, C.; Silva, C. Exploratory Research of CO2, Noise and Metabolic Energy Expenditure in Lisbon Commuting. Energies 2020, 13, 861. [Google Scholar] [CrossRef] [Green Version]
- Sensirion, A.G. Data Sheet SHT7x (SHT71, SHT75)—Humidity and Temperature Sensor IC; Technical Report Version V5; Data sheet; Sensirion: Stäfa, Switzerland, 2011. [Google Scholar]
- Salman, N.; Andrew, H.; Khan, A.; Noakes, C. Real Time Wireless Sensor Network (WSN) based Indoor Air Quality Monitoring System. IFAC Pap. 2019, 52, 324–327. [Google Scholar] [CrossRef]
- World Health Organization. Occupational and Environmental Health Team. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; Technical Report Version V1; Fact sheet; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- EU. EU Air Quality Directive; Technical Report Version V1; Directives; European Environmental Agency: Copenhagen, Denmark, 2008. [Google Scholar]
- Abt, E.; Suh, H.; Allen, G.; Koutrakis, P. Characterization of Indoor Particle Sources: A Study Conducted in the Metropolitan Boston Area. Environ. Health Perspect. 2000, 108, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Bai, Y.; Wang, P.; Zhao, Y. An Overview of Physical and Chemical Features of Diesel Exhaust Particles. J. Energy Inst. 2019, 92, 1864–1888. [Google Scholar] [CrossRef]
- Kittelson, D. Engines and Nanoparticles: A Review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Chan, A. Commuter Exposure and Indoor-Outdoor Relationships of Carbon Oxides in Buses in Hong Kong. Atmos. Environ. 2003, 37, 3809–3815. [Google Scholar] [CrossRef]
- Scott, J.; Kraemer, D.; Keller, R. Occupational Hazards of Carbon Dioxide Exposure. J. Chem. Health Saf. 2009, 16, 18–22. [Google Scholar] [CrossRef]
- Hudda, N.; Fruin, S.A. Carbon dioxide accumulation inside vehicles: The effect of ventilation and driving conditions. Sci. Total. Environ. 2018, 610–611, 1448–1456. [Google Scholar] [CrossRef]
- American National Standards Institute (ANSI). Ventilation for Acceptable Indoor Air Quality; Technical Report 1; Standard 62-2001; ANSI/The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2001. [Google Scholar]
- Zhang, X.; Wargocki, P.; Lian, Z.; Thyregod, C. Effects of Exposure to Carbon Dioxide and Bioeffluents on Perceived Air Quality, Self-assessed Acute Health Symptoms and Cognitive Performance. Indoor Air 2017, 27, 47–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartakovsky, L.; Baibikov, V.; Czerwinski, J.; Gutman, M.; Kasper, M.; Popescu, D.; Veinblat, M.; Zvirin, Y. In-vehicle particle air pollution and its mitigation. Atmos. Environ. 2013, 64, 320–328. [Google Scholar] [CrossRef]
- Gładyszewska-Fiedoruk, K. Concentrations of Carbon Dioxide in a Car. Transport. Res. Part D Transp. Environ. 2011, 16, 166–171. [Google Scholar] [CrossRef]
- Luangprasert, M.; Vasithamrong, C.; Pongratananukul, S.; Chantranuwathana, S.; Pumrin, S.; De Silva, I. In-Vehicle Carbon Dioxide Concentration in Commuting Cars in Bangkok, Thailand. J. Air Waste Manag. 2017, 67, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Abi-Esber, L.; El-Fadel, M. Indoor to Outdoor Air Aquality Associations with Self-Pollution Implications inside Passenger Car Cabins. Atmos. Environ. 2013, 81, 450–463. [Google Scholar] [CrossRef]
- John, L. (Technical Report, Enviro Tech Services, Greeley, CO, USA). Personal communication, 2019. [Google Scholar]
PM, PM [28] | NO [37] | CO [42] | T [42] | RH [42] | |
---|---|---|---|---|---|
Model of sensor | SDS-011 | Alphasense NO2B43F | Sensirion SCD30 | Sensirion SCD30 | Sensirion SCD30 |
Working principle | Light scattering | Electrochemical | NDIR | By modeling | By modeling |
Range | 0.0–999.9 g m | 0–500 ppb | 400–10 000 ppm | −40 to 70 °C | 0–100% |
Resolution | 0.3 g m | 1 ppb | 30 ppm | ± °C * | ± 3% |
Response time | 10 s | 60 s | 20 s | >10 s | 8 s |
Sensor | Species | Y Intercept | Slope | RMSE | ||
---|---|---|---|---|---|---|
Node03: | PM | 1443 | −4.02 | 1.31 | 0.90 | 6.88 |
Node03: | PM | 1436 | −3.70 | 1.51 | 0.71 | 18.05 |
Node03: | NO | 1464 | −5.92 | 1.08 | 0.96 | 5.85 |
Node04: | PM | 1327 | −3.85 | 1.26 | 0.92 | 5.93 |
Node04: | PM | 1323 | −4.71 | 1.49 | 0.75 | 15.44 |
Node04: | NO | 1332 | 0.85 | 0.99 | 0.94 | 6.14 |
Campaign 1 | Campaign 2 | Campaign 3 | ||||
---|---|---|---|---|---|---|
Vehicle type | Waste removal trucks N = 3 | Hospital vans N = 7 | Taxis N = 4 | |||
Time period | 12–15 August | 9–12 September 16–19 September | 23–24, 29–30 September 7, 9–11, 15–17 October | |||
Typical work start and end times | 14:00–20:00 | 08:00–16:30 | 10:00–15:30 | |||
Average hours worked | 5.5 h | 7.5 h | 4.5 h | |||
AFS status | On | Off | On | Off | On | Off |
1803 | 1734 | 4771 | 4962 | 935 | 2015 |
PM | PM | NO | |
---|---|---|---|
Campaign 1 vs. Campaign 2 | <0 | <0 | 0.012 |
Campaign 1 vs. Campaign 3 | 0.0010 | 0.021 | 0.74 |
Campaign 2 vs. Campaign 3 | 0.0070 | 0.064 | 0.13 |
Campaign 1 ON vs. OFF | 0.48 | 0.48 | 0.88 |
Campaign 2 ON vs. OFF | 0.065 | 0.56 | 0.22 |
Campaign 3 ON vs. OFF | 0.0037 | 0.32 | 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frederickson, L.B.; Lim, S.; Russell, H.S.; Kwiatkowski, S.; Bonomaully, J.; Schmidt, J.A.; Hertel, O.; Mudway, I.; Barratt, B.; Johnson, M.S. Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors. Atmosphere 2020, 11, 749. https://doi.org/10.3390/atmos11070749
Frederickson LB, Lim S, Russell HS, Kwiatkowski S, Bonomaully J, Schmidt JA, Hertel O, Mudway I, Barratt B, Johnson MS. Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors. Atmosphere. 2020; 11(7):749. https://doi.org/10.3390/atmos11070749
Chicago/Turabian StyleFrederickson, Louise Bøge, Shanon Lim, Hugo Savill Russell, Szymon Kwiatkowski, James Bonomaully, Johan Albrecht Schmidt, Ole Hertel, Ian Mudway, Benjamin Barratt, and Matthew Stanley Johnson. 2020. "Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors" Atmosphere 11, no. 7: 749. https://doi.org/10.3390/atmos11070749
APA StyleFrederickson, L. B., Lim, S., Russell, H. S., Kwiatkowski, S., Bonomaully, J., Schmidt, J. A., Hertel, O., Mudway, I., Barratt, B., & Johnson, M. S. (2020). Monitoring Excess Exposure to Air Pollution for Professional Drivers in London Using Low-Cost Sensors. Atmosphere, 11(7), 749. https://doi.org/10.3390/atmos11070749