Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Artificial Neural Network
3. Results
3.1. Odor Characteristics
3.2. Odor Prediction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.; Lee, H.; Choi, E.; Choi, I.; Shin, T.; Im, H.; Ahn, S. Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer. Chemosphere 2014, 117, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Lewkowska, P.; Cieślik, B.; Dymerski, T.; Konieczka, P.; Namieśnik, J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 2016, 151, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rodríguez, A.; Camara, V.F.; Campo, F.; Becherán, L.; Durán, A.; Vieira, V.D.; Garcia-Ramirez, A.R. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 2018, 134, 92–100. [Google Scholar] [PubMed]
- Park, S.; Kim, M.; Kim, M.; Namgung, H.G.; Kim, K.T.; Cho, K.H.; Kwon, S.B. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). J. Hazard. Mater. 2018, 341, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Zhu, J.; Knoll, W. From gas sensors to biomimetic artificial noses. Chemosensors 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, Y.; Nakamoto, T. Odor impression prediction from mass spectra. PLoS ONE 2016, 11, e0157030. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Liu, C.; Tomiura, Y.; Hayashi, K. Machine-learning-based olfactometer: Prediction of odor perception from physicochemical features of odorant molecules. Anal. Chem. 2017, 89, 11999–12005. [Google Scholar] [CrossRef] [PubMed]
- Zarra, T.; Galang, G.; Ballesteros, F., Jr.; Belgiorno, V.; Naddeo, V. Environmental odour management by artificial neural network—A review. Environ. Int. 2019, 133, 105189. [Google Scholar] [CrossRef] [PubMed]
- Byliński, H.; Sobecki, A.; Gębicki, J. The use of artificial neural networks and decision trees to predict the degree of odor nuisance of post-digestion sludge in the sewage treatment plant process. Sustainability 2019, 11, 4407. [Google Scholar] [CrossRef] [Green Version]
- Mirshahi, M.; Partovi Nia, V.; Adjengue, L. Automatic odor prediction for electronic nose. J. Appl. Stat. 2018, 45, 2788–2799. [Google Scholar] [CrossRef]
- Onkal-Engin, G.; Demir, I.; Engin, S.N. Determination of the relationship between sewage odour and BOD by neural networks. Environ. Model. Softw. 2005, 20, 843–850. [Google Scholar] [CrossRef]
- CEN, E. Air Quality-Determination of Odor Concentration by Dynamic Olfactometry; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Nagata, Y.; Takeuchi, N. Measurement of odor threshold by triangle odor bag method. Odor Meas. Rev. Chem. 2003, 118, 118–127. [Google Scholar]
- Dou, M.; Qin, C.; Li, G.; Wang, C. Research on calculation method of free flow discharge based on artificial neural network and regression analysis. Flow Meas. Instrum. 2020, 72, 101707. [Google Scholar] [CrossRef]
- Janes, K.R.; Yang, S.X.; Hacker, R.R. Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks. Appl. Soft Comput. 2005, 6, 53–61. [Google Scholar] [CrossRef]
- Qdais, H.A.; Hani, K.B.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le Roux, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1–12. [Google Scholar] [CrossRef]
Odor (Unit) | Threshold a (ppm, v/v) | Grit Chamber (MW) | 1st Sediment Tank (MW) | Aerobic Biotreatment | Anaerobic Biotreatment | Grit Chamber (IW) | 1st Sediment Tank (IW) |
---|---|---|---|---|---|---|---|
Olfactometry (OU/m3) | – | 2080–3000 | 2080–3000 | 669–1000 | 100–300 | 3000–30,000 | 10,000–30,000 |
Hydrogen Sulfide (μmole/mole) | 0.00041 | 14.835–29.070 | 2.202–11.200 | ND b | ND | 1.142–253.75 | 109.000–138.250 |
Methyl Mercaptan (μmole/mole) | 0.000070 | 0.141–0.337 | 0.211–0.294 | 0.111–0.205 | 0.003–0.004 | 0.259–2.353 | 0.000–1.116 |
Dimethyl Sulfide (μmole/mole) | 0.0030 | ND | 0.000–0.074 | 0.059–0.061 | 0.003–0.005 | 0.047–0.328 | ND |
Acetaldehyde (μmole/mole) | 0.0015 | ND | 0.130-0.335 | ND | ND | ND | 0.066–0.102 |
Butylaldehyde (μmole/mole) | 0.00067 | ND | 0.025-0.693 | ND | ND | ND | 0.008–0.013 |
Ranking | Content | R2 |
---|---|---|
1 | Water Temperature | 0.6633 |
2 | BOD | 0.7027 |
3 | TSS | 0.7064 |
4 | VSS | 0.7133 |
5 | pH | 0.7174 |
6 | ORP | 0.7336 |
7 | DO | 0.7432 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Song, J.; Yoo, S.S.; Lee, B.-J.; Ji, H.W. Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere 2020, 11, 784. https://doi.org/10.3390/atmos11080784
Kang J-H, Song J, Yoo SS, Lee B-J, Ji HW. Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere. 2020; 11(8):784. https://doi.org/10.3390/atmos11080784
Chicago/Turabian StyleKang, Jeong-Hee, JiHyeon Song, Sung Soo Yoo, Bong-Jae Lee, and Hyon Wook Ji. 2020. "Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN)" Atmosphere 11, no. 8: 784. https://doi.org/10.3390/atmos11080784
APA StyleKang, J. -H., Song, J., Yoo, S. S., Lee, B. -J., & Ji, H. W. (2020). Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere, 11(8), 784. https://doi.org/10.3390/atmos11080784