Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence
Abstract
:1. Introduction
2. Observations
3. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baumjohann, W.; Paschmann, G.; Cattell, C.A. Average plasma properties in the center plasma sheet. J. Geophys. Res. Space Phys. 1989, 94, 6597–6606. [Google Scholar] [CrossRef]
- Fairfield, D.H.; Lepping, R.P.; Hones, E.W.; Bame, S.J.; Asbridge, J.R. Simultaneous measurements of magnetotail dynamics by IMP spacecraft. J. Geophys. Res. 1981, 86, 1396–1414. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, M.; Terasawa, T.; Mukai, T.; Saito, Y.; Yamamoto, T.; Kokubun, S. Plasma entry from the flanks of the near-Earth magnetotail: Geotail observations. J. Geophys. Res. 1998, 103, 4391–4408. [Google Scholar] [CrossRef]
- Lennartsson, O.W.; Shelley, E.G. Survey of 0.1- to 16-keV/e plasma sheet ion composition. J. Geophys. Res. 1986, 91, 3061–3076. [Google Scholar] [CrossRef]
- Lennartsson, W. A scenario for solar wind penetration of earth’s magnetotail based on ion composition data from the ISEE 1 spacecraft. J. Geophys. Res. 1992, 97, 19221–19238. [Google Scholar] [CrossRef]
- Øieroset, M.; Raeder, J.; Phan, T.D.; Wing, S.; McFadden, J.P.; Li, W.; Fujimoto, M.; Rѐme, H.; Balogh, A. Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys. Res. Lett. 2005, 32, L12S07. [Google Scholar] [CrossRef]
- Stenuit, H.; Fujimoto, M.; Fuselier, S.A.; Sauvaud, J.-A.; Wing, S.; Fedorov, A.; Budnik, E.; Savin, S.P.; Trattner, K.J.; Angelopoulos, V.; et al. Multi-spacecraft study ion the dynamics of the dusk-flank magnetosphere under northward IMF: January 10–11, 1997. J. Geophys. Res. 2002, 107, 1333. [Google Scholar] [CrossRef]
- Sorathia, K.; Merkin, V.G.; Ukhorskiy, A.Y.; Allen, R.C.; Nykyri, K.; Wing, S. Solar wind ion entry into the magnetosphere during northward IMF. J. Geophys. Res. Space Phys. 2019, 124, 5461–5481. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.F.; Borovsky, J.E.; Skoug, R.M.; Smith, C.W. Delivery of cold, dense plasma sheet material into the near-Earth region. J. Geophys. Res. 2003, 108, 1151. [Google Scholar] [CrossRef] [Green Version]
- Terasawa, T.; Fujimoto, M.; Mukai, T.; Shinohara, I.; Lepping, R.P. Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 1997, 24, 935–938. [Google Scholar] [CrossRef]
- Wing, S.; Newell, P.T. 2D plasma sheet ion density and temperature profiles for northward and southward IMF. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef] [Green Version]
- Wing, S.; Johnson, J.R.; Chaston, C.C.; Echim, M.; Escoubet, C.P.; Lavraud, B.; Lemon, C.; Nykyri, K.; Otto, A.; Raeder, J.; et al. Review of Solar Wind Entry into and Transport within the Plasma Sheet. Space Sci. Rev. 2014, 184, 33–86. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Thomsen, M.F.; McComas, D.J. The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin? J. Geophys. Res. 1997, 102, 22089–22097. [Google Scholar] [CrossRef]
- Lavraud, B.; Thomsen, M.F.; Borovsky, J.E.; Denton, M.H.; Pulkkinen, T.I. Magnetosphere preconditioning under northward IMF: Evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. J. Geophys. Res. 2006, 111, A09208. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Khotyaintsev, Y.V.; Vaivads, A.; André, M.; Huang, S.Y. Occurrence rate of earthward-propagating dipolarization fronts. Geophys. Res. Lett. 2012, 39, L10101. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, H.S.; Norgren, C.; Hwang, K.J.; Liu, C.M. Formation of dipolarization fronts after current sheet thinning. Phys. Plasmas 2018, 25, 072123. [Google Scholar] [CrossRef]
- Yao, Z.; Sun, W.J.; Fu, S.Y.; Pu, Z.Y.; Liu, J.; Angelopoulos, V.; Zhang, X.J.; Chu, X.N.; Shi, Q.Q.; Guo, R.L.; et al. Current structures associated with depolarization fronts. J. Geophys. Res. Space Phys. 2013, 118, 6980–6985. [Google Scholar] [CrossRef]
- Toledo-Redondo, S.; André, M.; Khotyaintsev, Y.V.; Vaivads, A.; Walsh, A.; Li, W.; Graham, D.B.; Lavraud, B.; Masson, A.; Aunai, N.; et al. Cold ion demagnetization near the X-line of magnetic reconnection. Geophys. Res. Lett. 2016, 43, 6759–6767. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.B.; Fu, H.S.; Liu, W.L.; Lu, S. Enhancement of oxygen in the magnetic island associated with dipolarization fronts. J. Geophys. Res. Space Phys. 2017, 122, 185–193. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, H.S.; Norgren, C.; Toledo-Redondo, S.; Liu, C.M.; Dong, X.C. Ionospheric cold ions detected by MMS behind dipolarization fronts. Geophys. Res. Lett. 2019, 46, 7883–7892. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Fu, H.S.; Liu, C.M.; Wang, T.Y.; Ergun, R.E.; Cozzani, G.; Huang, S.Y.; Khotyaintsev, Y.V.; Le Contel, O.; Giles, B.L.; et al. Electron–driven dissipation in a tailward flow burst. Geophys. Res. Lett. 2019, 46, 5698–5706. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Vaivads, A.; Khotyaintsev, Y.V.; Gershman, D.J.; Hwang, K.J.; Chen, Z.Z.; Cao, D.; Xu, Y.; Yang, J.; et al. Electron jet detected by MMS at dipolarization front. Geophys. Res. Lett. 2018, 45, 556–564. [Google Scholar] [CrossRef]
- Fu, H.S.; Khotyaintsev, Y.V.; Vaivads, A.; André, M.; Huang, S.Y. Electric structure of depolarization front at sub-proton scale. Geophys. Res. Lett. 2012, 39, L06105. [Google Scholar] [CrossRef]
- Fu, H.S.; Khotyaintsev, Y.V.; André, M.; Vaivads, A. Fermi and betatron acceleration of suprathermal electrons behind depolarization fronts. Geophys. Res. Lett. 2011, 38, L16104. [Google Scholar] [CrossRef]
- Fu, H.S.; Khotyaintsev, Y.V.; Vaivads, A.; Retinò, A.; André, M. Energetic electron acceleration by unsteady magnetic reconnection. Nat. Phys. 2013, 9, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Cao, J.B.; Khotyaintsev, Y.V.; Sitnov, M.I.; Runov, A.; Fu, S.Y.; Hamrin, M.; André, M.; Retinò, A.; Ma, Y.D.; et al. Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophys. Res. Lett. 2013, 40, 6023–6027. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Xu, Y.; Vaivads, A.; Khotyaintsev, Y.V. Super-efficient Electron Acceleration by an Isolated Magnetic Reconnection. Astrophys. J. Lett. 2019, 870, L22. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Xu, Y.; Wang, T.Y.; Cao, J.B.; Sun, X.G.; Yao, Z.H. Suprathermal electron acceleration inthe near-Earth flow rebounce region. J. Geophys. Res. Space Phys. 2017, 122, 594–604. [Google Scholar] [CrossRef]
- Liu, C.M.; Liu, Y.Y.; Xu, Y.; Zhao, M.J. Betatron Cooling of Suprathermal Electrons in the Terrestrial Magnetotail. Astrophys. J. 2018, 866, 93. [Google Scholar] [CrossRef]
- Wu, M.; Lu, Q.; Volwerk, M.; Nakamura, R.; Zhang, T. Electron acceleration behind a wavy dipolarization front. Astrophys. Space Sci. 2018, 363, 22. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, H.S.; Liu, C.M.; Wang, T.Y. Electron acceleration by dipolarization fronts and magnetic reconnection: A quantitative comparison. Astrophys. J. 2018, 853, 11. [Google Scholar] [CrossRef]
- Fu, H.S.; Khotyaintsev, Y.V.; Vaivads, A.; André, M.; Sergeev, V.A.; Huang, S.Y.; Kronberg, E.A.; Daly, P.W. Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. J. Geophys. Res. 2012, 117, A12221. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Cao, J.B.; Xu, Y.; Yu, Y.Q.; Kronberg, E.A.; Daly, P.W. Rapid pitch angle evolution of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 2017, 44, 10116–10124. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Xu, Y.; Cao, J.B.; Liu, W.L. Explaining the rolling-pin distribution of suprathermal electrons behind depolarization fronts. Geophys. Res. Lett. 2017, 44, 6492–6499. [Google Scholar] [CrossRef]
- Li, W.; Raeder, J.; Thomsen, M.F.; Lavraud, B. Solar wind plasma entry into the magnetosphere under northward IMF conditions. J. Geophys. Res. 2008, 113, A04204. [Google Scholar] [CrossRef] [Green Version]
- Lavraud, B.; Denton, M.H.; Thomsen, M.F.; Borovsky, J.E.; Friedel, R.H.W. Superposed epoch analysis of dense plasma access to geosynchronous orbit. Ann. Geophys. 2005, 23, 2519–2529. [Google Scholar] [CrossRef] [Green Version]
- Øieroset, M.; Yamauchi, M.; Liszka, L.; Hultqvist, B. Energetic ion outflow from the dayside ionosphere: Categorization, classification, and statistical study. J. Geophys. Res. 1999, 104, 24915–24928. [Google Scholar] [CrossRef]
- Yau, A.W.; Shelley, E.G.; Peterson, W.K.; Lenchyshyn, L. Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations. J. Geophys. Res. 1985, 90, 8417. [Google Scholar] [CrossRef]
- Fuselier, S.A.; Elphic, R.C.; Gosling, J.T. Composition measurements in the dusk flank magnetopause. J. Geophys. Res. 1999, 104, 4515–4522. [Google Scholar] [CrossRef]
- Reme, H.; Aoustin, C.; Bosqued, J.M.; Dandouras, I.; Lavraud, B.; Sauvaud, J.A.; Barthe, A.; Bouyssou, J.; Camus, T.; Coeur-Joly, O.; et al. First multispacer craft ion measurements in and near the Earth’s magnetosphere with identical Cluster ion spectrometry (CIS) experiments. Ann. Geophys. 2001, 19, 1303–1354. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-P.; Gkioulidou, M.; Lyons, L.R.; Angelopoulos, V. Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. 2012, 117, A08215. [Google Scholar] [CrossRef] [Green Version]
- Burch, J.L.; Moore, T.E.; Torbert, R.B.; Giles, B.L. Magnetospheric Multiscale overview and science objectives. Space Sci. Rev. 2016, 199, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.T.; Anderson, B.J.; Baumjohann, W.; Bromund, K.R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H.K.; Leneman, D.; Magnes, W.; et al. The magnetospheric multiscale magnetometers. Space Sci. Rev. 2014, 199, 189–256. [Google Scholar] [CrossRef] [Green Version]
- Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; et al. Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 2016, 199, 331–406. [Google Scholar] [CrossRef] [Green Version]
- Angelopoulos, V. The ARTEMIS mission. Space Sci. Rev. 2011, 165, 3–25. [Google Scholar] [CrossRef]
- Auster, H.U.; Glassmeier, K.H.; Magnes, W.; Aydogar, O.; Baumjohann, W.; Constantinescu, D.; Fischer, D.; Fornacon, K.H.; Georgescu, E.; Harvey, P.; et al. The THEMIS fluxgate magnetometer. Space Sci. Rev. 2008, 141, 235–264. [Google Scholar] [CrossRef]
- McFadden, J.P.; Carlson, C.W.; Larson, D.; Ludlam, M.; Abiad, R.; Elliott, B.; Turin, P.; Marckwordt, M.; Angelopoulos, V. The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 2008, 141, 277. [Google Scholar] [CrossRef]
- Sibeck, D.G. A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. J. Geophys. Res. 1990, 95, 3755–3771. [Google Scholar] [CrossRef]
- Cao, J.B.; Ma, Y.D.; Parks, G.; Reme, H.; Dandouras, I.; Nakamura, R.; Zhang, T.L.; Zong, Q.; Lucek, E.; Carr, C.M.; et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. J. Geophys. Res. 2006, 111, A04206. [Google Scholar] [CrossRef]
- Huang, S.Y.; Fu, H.S.; Vaivads, A.; Yuan, Z.G.; Pang, Y.; Zhou, M.; Khotyaintsev, Y.V.; Deng, X.H.; André, M.; Zhang, L.; et al. Dawn-dusk scale of dipolarization front in the Earth’s magnetotail: Multi-Cases study. Astrophys. Space Sci. 2015, 357, 22. [Google Scholar] [CrossRef]
- Fujimoto, M.; Mukai, T.; Matsuoka, A.; Saito, Y.; Hayakawa, H.; Kokubun, S.; Lepping, R.P. Multipoint observations of cold-dense plasma sheet and its relation with tail-LLBL. Adv. Space Res. 2000, 25, 1607–1616. [Google Scholar] [CrossRef]
- Fujimoto, M.; Mukai, T.; Kokubun, S. Cold-dense plasma sheet and hot-dense ions in the inner-magnetosphere. Adv. Space Res. 2002, 30, 2279–2288. [Google Scholar] [CrossRef]
- Hasegawa, H.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Mukai, T. Geotail observations of the dayside outer boundary region interplanetary magnetic field control and dawn-dusk asymmetry. J. Geophys. Res. 2003, 108, 1065. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Raeder, J.; Thomsen, M.F.; Lavraud, B.; Lü, L.-Z.; Liang, E.-W. The formation of superdense plasma sheet in association with the IMF turning from northward to southward. J. Geophys. Res. Space Phys. 2018, 122, 2936–2955. [Google Scholar] [CrossRef]
- Zhao, M.J.; Fu, H.S.; Liu, C.M.; Chen, Z.Z.; Xu, Y.; Giles, B.L.; Burch, J.L. Energy range of electron rolling pin distribution behind dipolarization front. Geophys. Res. Lett. 2019, 46, 2390–2398. [Google Scholar] [CrossRef]
- Fujimoto, M.; Terasawa, T.; Mukai, T. The Cold-dense plasma sheet: A Geotail Perspective. Space Sci. Rev. 1997, 80, 325–339. [Google Scholar] [CrossRef]
- Hasegawa, H.; Fujimoto, M.; Phan, T.D.; Re`me, H.; Balogh, A.; Dunlop, M.W.; Hashimoto, C.; TanDokoro, R. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 2004, 430, 755. [Google Scholar] [CrossRef]
- Burch, J.L.; Torbert, R.B.; Phan, T.D.; Chen, L.J.; Moore, T.E.; Ergun, R.E.; Eastwood, J.P.; Gershman, D.J.; Cassak, P.A.; Argall, M.R.; et al. Electron-scale measurements of magnetic reconnection in space. Science 2016, 352, aaf2939. [Google Scholar] [CrossRef] [Green Version]
- Speiser, T.W. Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 1965, 70, 4219–4226. [Google Scholar] [CrossRef]
- Torbert, R.B.; Burch, J.L.; Phan, T.D.; Hesse, M.; Argall, M.R.; Shuster, J.; Ergun, R.E.; Alm, L.; Nakamura, R.; Genestreti, K.J.; et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 2018, 362, 1391–1395. [Google Scholar] [CrossRef] [Green Version]
- Haaland, S.; Lybekk, B.; Maes, L.; Laundal, K.; Pedersen, A.; Tenfjord, P.; Ohma, A.; Østgaard, N.; Reistad, J.; Snekvik, K. North south asymmetries in cold plasma density in the magnetotail lobes: Cluster observations. J. Geophys. Res. Space Phys. 2017, 122, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Breuillard, H.; Le Contel, O.; Retino, A.; Chasapis, A.; Chust, T.; Mirioni, L.; Graham, D.B.; Wilder, F.D.; Cohen, I.; Vaivads, A.; et al. Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. Geophys. Res. Lett. 2016, 43, 7279–7286. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Xu, Y.; Khotyaintsev, Y.V.; Burch, J.L.; Ergun, R.E.; Gershman, D.G.; Torbert, R.B. Electron-scale measurements of dipolarization front. Geophys. Res. Lett. 2018, 45, 4628–4638. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Wang, T.Y.; Yu, Y.; Chen, F. Relationship between Current Filaments and Turbulence during a Turbulent Reconnection. Astrophys. J. Lett. 2020, 888, L16. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Chen, Z.; Chen, F. Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence. Atmosphere 2020, 11, 831. https://doi.org/10.3390/atmos11080831
Yu Y, Chen Z, Chen F. Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence. Atmosphere. 2020; 11(8):831. https://doi.org/10.3390/atmos11080831
Chicago/Turabian StyleYu, Yue, Zuzheng Chen, and Fang Chen. 2020. "Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence" Atmosphere 11, no. 8: 831. https://doi.org/10.3390/atmos11080831
APA StyleYu, Y., Chen, Z., & Chen, F. (2020). Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence. Atmosphere, 11(8), 831. https://doi.org/10.3390/atmos11080831