An Improved Method for Optical Characterization of Mineral Dust and Soot Particles in the El Paso-Juárez Airshed
Abstract
:1. Introduction
2. Methodology
2.1. Instruments
2.2. Models
2.2.1. Maximum Likelihood Estimator (MLE)
2.2.2. Bi-Modal Distribution
2.2.3. T-matrix Code
2.2.4. The Scattering Coefficients
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Partial Derivatives
References
- Medina, R.; Stockwell, W.; Fitzgerald, R.M. Optical Characterization of Mineral Dust and Soot Particles in the El Paso Juarez Airshed. Aerosol Sci. Eng. 2018, 2, 11–19. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix Computations of Light Scattering by Nonspherical Particles: A Review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Kim, K.-M.; Lau, W.-K.; Sud, Y.C.; Walker, G.K. Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations. Clim. Dyn. 2010, 11, 115–126. [Google Scholar] [CrossRef]
- Kim, D.; Chin, M.; Diehl, T.; Bian, H.; Remer, L.A.; Yu, H.; Brown, M.E.; Stockwell, W.R. The Role of Surface Wind and Vegetation Cover in Multi-Decadal Variations of Dust Emission in the Sahara and Sahel. Atmos. Environ. 2017, 148, 282–296. [Google Scholar] [CrossRef]
- Evan, A.T.; Heidinger, A.K.; Bennartz, R.; Bennington, V.; Mahowald, N.M.; Corrada-Bravo, H.; Velden, C.S.; Myhre, G.; Kossin, J.P. Ocean Temperature Forcing by Aerosols Across the Atlantic Tropical Cyclone Development Region. Geochem. Geophys. Geosys. 2008, 9, Q05V04. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.D., Qin, M., Manning, Z., Chen, M., Marquis, K.B., Averyt, M.T., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 129–234. [Google Scholar]
- Haywood, J.M.; Francis, P.; Osborne, S.; Glew, M.; Loeb, N.; Highwood, E.; Tanre, D.; Myhre, G.; Formenti, P.; Hirst, E. Radiative Properties and Direct Radiative Effect of Saharan Dust Measured by the C-130 Aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res. 2003, 108, 8577. [Google Scholar] [CrossRef] [Green Version]
- Grahame, T.J.; Klemm, R.; Schlesinger, R.B. Critical review: Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014, 64, 620–660. [Google Scholar] [CrossRef]
- Stewart, D.R.; Saunders, E.; Perea, R.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Projected Changes in Particulate Matter Concentrations in the South Coast Air Basin Due to Basin-Wide Reductions in Nitrogen Oxides, Volatile Organic Compounds and Ammonia Emissions. J. Air Waste Manag. Assoc. 2019, 69, 192–208. [Google Scholar] [CrossRef]
- Stewart, D.R.; Saunders, E.; Perea, R.A.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environ. Health Insights 2017, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M. Long-Term Measurements of the Transport of African Mineral Dust to the Southeastern United States: Implications for Regional Air Quality. J. Geophys. Res. 1999, 104, 15917–15927. [Google Scholar] [CrossRef] [Green Version]
- Giannadaki, D.; Pozzer, A.; Lelieveld, J. Modeled Global Effects of Airborne Desert Dust on Air Quality and Premature Mortality. Atmos. Chem. Phys. 2014, 14, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; War, D.S.; Flanner, M.G. The Size Distribution of Desert Dust Aerosols and Its Impact on the Earth System. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Ryder, C.L.; Highwood, E.J.; Lai, T.M.; Sodemann, H.; Marsham, J.H. Impact Of Atmospheric Transport on the Evolution of Microphysical and Optical Properties of Saharan Dust. J. Geophys. Res. Lett. 2013, 40, 2433–2438. [Google Scholar] [CrossRef]
- Yang, M.S.; Howell, G.; Zhuang, J.; Huebert, B.J. Attribution of Aerosol Light Absorption to Black Carbon, Brown Carbon, and Dust in China—Interpretations of Atmospheric Measurements during EAST-AIRE. Atmos. Chem. Phys. 2009, 9, 2035–2050. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Chow, J.C.; Watson, J.G.; Green, M.C.; Wang, X.; Chen, L.-W.A.; Trimble, D.L.; Cropper, P.M.; Kohl, S.D.; Gronstal, S.B. Separation of Brown Carbon from Black Carbon for IMPROVE and Chemical Speciation Network PM2.5 Samples. J. Air Waste Manag. Assoc. 2018, 68, 494–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, H.; Zhang, X.-Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.-C.; Wang, H.; Blarel, L.; et al. Ground-based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARS- NET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Strong Radiative Heating due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The Influence on Climate Forcing of Mineral Aerosols from Disturbed Soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Esparza, A.E.; Fitzgerald, R.M.; Gill, T.F.; Polanco, J. Use of Light Extinction Method and Inverse Modeling to Study Aerosols in the Paso del Norte Airshed. Atmos. Environ. 2011, 45, 7360–7369. [Google Scholar] [CrossRef]
- Pearson, R.; Fitzgerald, R. Application of a Wind Model for the El Paso-Juarez Airshed. J. Air Waste Manag. Assoc. 2001, 51, 669–680. [Google Scholar] [CrossRef]
- El Paso Extreme Weather Records. Available online: https://www.weather.gov/epz/elpaso_extreme_weather (accessed on 18 May 2020).
- Chen, L.-W.A.; Tropp, R.J.; Li, W.-W.; Zhu, D.; Chow, J.C.; Watson, J.G.; Zielinska, B. Aerosol and Air Toxics Exposure in El Paso, Texas: A Pilot Study. Aerosol Air Qual. Res. 2012, 12, 169–179. [Google Scholar] [CrossRef]
- Selimovic, V.; Yokelson, R.J.; Warneke, C.; Roberts, J.M.; De Gouw, J.; Reardon, J.; Griffith, D.W.T. Aerosol Optical Properties and Trace Gas Emissions by PAX and OP-FTIR for Laboratory-Simulated Western US Wildfires during FIREX. Atmos. Chem. Phys. 2018, 18, 2929–2948. [Google Scholar] [CrossRef] [Green Version]
- Climet Instruments, CI-150t, Laser Particle Counter, Operator’s Manual; Revision 1.03—2 February 2007; Climet: Redlands, CA, USA, 2007.
- Wallace, L.; Howard-Reed, C. Continuous Monitoring of Ultrafine, Fine, and Coarse Particles in a Residence for 18 Months in 1999–2000. J. Air Waste Manag. Assoc. 2011, 52, 828–844. [Google Scholar] [CrossRef] [PubMed]
- Levoni, C.; Guzzi, R.; Torricell, F. Atmospheric Aerosols Optical Properties: A database of radiative characteristics for different components and classes. Appl. Opt. 1997, 36, 8031–8041. [Google Scholar] [CrossRef] [PubMed]
- Arai, K. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols. Adv. Space Res. 2007, 39, 13–19. [Google Scholar] [CrossRef]
- Lolli, S.; Khor, W.Y.; MatJafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote. Sens. 2019, 11, 2660. [Google Scholar] [CrossRef] [Green Version]
22 March 2013 | 13 April 2013 | 23 April 2013 | |
---|---|---|---|
Soot | 57% | 11% | 25% |
Mineral Dust | 43% | 89% | 75% |
r | 0.96637 | 0.9775 | 0.86424 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanco, J.; Ramos, M.; Fitzgerald, R.M.; Stockwell, W.R. An Improved Method for Optical Characterization of Mineral Dust and Soot Particles in the El Paso-Juárez Airshed. Atmosphere 2020, 11, 866. https://doi.org/10.3390/atmos11080866
Polanco J, Ramos M, Fitzgerald RM, Stockwell WR. An Improved Method for Optical Characterization of Mineral Dust and Soot Particles in the El Paso-Juárez Airshed. Atmosphere. 2020; 11(8):866. https://doi.org/10.3390/atmos11080866
Chicago/Turabian StylePolanco, Javier, Manuel Ramos, Rosa M. Fitzgerald, and William R. Stockwell. 2020. "An Improved Method for Optical Characterization of Mineral Dust and Soot Particles in the El Paso-Juárez Airshed" Atmosphere 11, no. 8: 866. https://doi.org/10.3390/atmos11080866
APA StylePolanco, J., Ramos, M., Fitzgerald, R. M., & Stockwell, W. R. (2020). An Improved Method for Optical Characterization of Mineral Dust and Soot Particles in the El Paso-Juárez Airshed. Atmosphere, 11(8), 866. https://doi.org/10.3390/atmos11080866