Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Aerosol Products
2.2.1. MODIS-Derived AOD
2.2.2. MERRA-2 AOD Reanalysis
2.2.3. AERONET Ground-Based AOD
2.2.4. ECMWF Relative Humidity
2.3. Methodology
3. Results
3.1. Validation Against AERONET
3.2. Time Series of MODIS, MERRA-2, and AERONET AO
3.3. Extreme Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Station (I) ATHENS-NOA | ||||
AERONET | MODIS | MERRA-2 | MODIS C6.1 | MERRA-2 |
0.722 | 0.841 | 0.552 | 1 | 1 |
0.621 | 0.632 | 0.228 | 1 | 0 |
1.210 | 1.171 | 1.107 | 1 | 1 |
0.810 | 0.707 | 0.167 | 1 | 0 |
0.575 | 0.591 | 0.422 | 1 | 0 |
0.694 | 0.833 | 0.549 | 1 | 1 |
0.532 | 0.676 | 0.264 | 0 | 0 |
0.607 | 0.592 | 0.614 | 1 | 1 |
Number of extreme events with respect to AERONET (in %) | 88 | 50 | ||
Station (II) METU-ERDEMLI | ||||
0.527 | 0.295 | 0.255 | 0 | 0 |
0.672 | 0.703 | 0.271 | 1 | 0 |
0.860 | 0.891 | 0.372 | 1 | 0 |
0.657 | 0.354 | 0.292 | 0 | 0 |
0.658 | 0.707 | 0.456 | 1 | 0 |
0.681 | 0.201 | 0.712 | 0 | 1 |
0.501 | 0.447 | 0.331 | 0 | 0 |
0.515 | 0.443 | 0.338 | 0 | 0 |
0.525 | 0.616 | 0.307 | 1 | 0 |
0.604 | 0.317 | 0.211 | 0 | 0 |
0.644 | 0.439 | 0.252 | 0 | 0 |
0.531 | 0.282 | 0.170 | 0 | 0 |
0.521 | 0.445 | 0.131 | 0 | 0 |
0.530 | 0.336 | 0.282 | 0 | 0 |
0.510 | 0.177 | 0.161 | 0 | 0 |
0.536 | 0.324 | 0.312 | 0 | 0 |
0.507 | 0.495 | 0.245 | 0 | 0 |
0.514 | 0.508 | 0.315 | 1 | 0 |
0.567 | 0.388 | 0.280 | 0 | 0 |
0.527 | 0.295 | 0.255 | 0 | 0 |
Number of extreme events with respect to AERONET (in %) | 25 | 10 | ||
Station (III) CUT-TEPAK | ||||
0.613 | 0.607 | 0.292 | 1 | 0 |
0.684 | 0.687 | 0.506 | 1 | 0 |
0.512 | 0.521 | 0.416 | 1 | 1 |
0.977 | 0.979 | 0.721 | 1 | 0 |
0.768 | 0.700 | 0.936 | 1 | 0 |
0.642 | 0.692 | 0.505 | 1 | 1 |
0.529 | 0.400 | 0.280 | 0 | 0 |
Number of extreme events with respect to AERONET (in %) | 86 | 29 |
Study | Study Area | Ground Stations | Gridded Datasets | Overestimation/ Underestimation | Extreme Events | Statistical Results |
---|---|---|---|---|---|---|
[50] | Asia, Middle East and North Africa | 16 AERONET | DB, DT, and DB/DT of the MODIS C6.1 | DT and DB/DT overestimated AERONET. DB underestimated. | N/A | DB/DT: A = 0.934, b = 0.073, R2 = 0.707, RMSE = 0.238, RMB = 1.082. |
[15] | Central Europe | 8 AERONET | AVHRR (NOAA-16), Aqua and Terra of MODIS C004 | Both Aqua and Terra overestimated AERONET, while AVHRR underestimate. | N/A | N/A |
[47] | Global | 400 AERONET | MODIS C6.1, MERRA-2 and MERRAero | MODIS overestimated while MERRA-2 and MERRAero underestimated AERONET. | MODIS C6.1 detected extreme events better than MERRA-2 and MERRAero. | MODIS: a = 0.976, b = 0.016, R2 = 0.790, RMSE = 0.110, MBE = 0.011. MERRA-2: a = 0.726, b = 0.043, R2 = 0.700, RMSE = 0.119, MBE = −0.008. |
[53] | China | 13 AERONET | MODIS C005 | Overestimated small AOD values; underestimated large ones. | Poor MODIS performance to detect extreme events. | MODIS: a = 1.008, b = 0.132, R2 = 0.661. RMSE and RMB are N/A. |
[54] | Yangtze River China | One local station site in Wuhan University | MODIS C6.1 | Overestimated ground station data, though underestimated in extreme events. | Effective at detecting extreme events, though it underestimated them. | Terra: a = 0.747, b = 0.089, R2 = 0.795, RMSE = 0.129. Aqua: a = 0.703, b = 0.136, R2 = 0.788, RMSE = 0.181. |
[45] | Eastern Mediterranean | 13 AERONET | MODIS C5.1 Terra and Aqua | MODIS overestimated AERONET in both Terra and Aqua. | Both Terra and Aqua were effective in extreme events detection. | Terra: a = 1.007, b = 0.022, R2 = 0.578, RMSE = 0.129, RMB = 11.59%. Aqua: a = 1.113, b = 0.027, R2 = 0.608, RMSE = 0.12, RMB = 25.18%. |
[41] | Eastern Mediterranean | 9 AERONET | MODIS C6.1 and MERRA-2 | MODIS overestimated while MERRA-2 underestimated AERONET. | MODIS was more effective in detecting extreme events than MERRA2. | MODIS: a = 0.64, b = 0.12, R2 = 0.505, RMSE = 0.122, RMB = 1.198. MERRA-2: a = 0.59, b = 0.06, R2 = 0.576, RMSE = 0.104, RMB = 0.862%. |
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas, E.A.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, C.; Zhang, B.; Liu, K. A comparative time series analysis and modeling of aerosols in the contiguous United States and China. Sci. Total Environ. 2019, 690, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Gao, l.; Chen, L.; Li, J.; Heidinger, A.K.; Xu, X.; Qin, S. A long-term historical Aerosol Optical Depth data record (1982–2011) Over China From AVHRR. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2467–2480. [Google Scholar] [CrossRef]
- Smirov, A.; Holben, B.N.; Eck, T.F.; Dubovik, K.O. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Gueymard, C.A.; George, A. Gridded Aerosol Optical Depth Climatological Datasets Over Continents for Solar Radiation Modeling. In Proceedings of the Solar World Congress, Orlando, FL, USA, 8–12 November 2005; American Solar Energy Society: Orlando, FL, USA, 2005. [Google Scholar]
- Li, J.; Carlson, B.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Kahya, C.; Balcik, F.B.; Oztaner, Y.B.; Ozcomak, D.; Seker, D.Z. Spatio-temporal analysis of PM2.5 over Marmara region, Turkey. Fresenius Environ. Bull. 2017, 26, 310–317. [Google Scholar]
- Li, J.; Carlson, B.; Lacis, A.A. Application of spectral analysis techniques to the intercomparison of aerosol data—Part 4: Synthesized analysis of multisensor satellite and ground-based AOD measurements using combined maximum covariance analysis. Atmos. Meas. Tech. 2014, 7, 2531–2549. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Philip, N.; Rahman, A.; Mallick, J. Applications of satellite data for Aerosol Optical Depth (AOD) retrievals and validation with AERONET data. Atmos. Clim. Sci. 2011, 1, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Xia, X.; Chen, H. Intercomparison of multiple satellite aerosol products against AERONET over the north China Plain. Atmosphere 2019, 10, 480. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Xue, Y.; Leeuw, G.; Guang, J.; Wang, Y.; Li, Y.; Xu, H.; Yang, L.; Hou, T.; He, X.; et al. Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010. Biogeosciences 2011, 8, 3771–3791. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Kondragunta, S.; Laszlo, I.; Liu, H.; Remer, L.A.; Zhang, H.; Superczynski, S.; Ciren, P.; Holben, B.N.; Petrenko, M. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET. J. Geophys. Res. Atmos. 2016, 121, 7139–7160. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.; Oesch, D.; Foppa, N. Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS. Geophys. Res. Lett. 2005, 32, L17816. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Carletta, N.; Chen, S.H.; Smirov, A. Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements. J Geophys. Res. Atmos. 2017, 122, 9945–9967. [Google Scholar] [CrossRef]
- Tan, Y.; Li, E.; Zhang, Z.; Lin, X.; Chi, Y.; Zhou, L.; Wu, C.; Wang, Q. Validation of POLDER-3/GRASP aerosol products using AERONET measurements over China. Atmos. Environ. 2019, 215, 116893. [Google Scholar] [CrossRef]
- Pilinis, C.; Seinfeld, J.H.; Grosjean, D. Water content of atmospheric aerosols. Atmos. Environ. 1989, 23, 1601–1606. [Google Scholar] [CrossRef]
- Malm, W.C.; Day, D.E.; Kreidenweis, S.M.; Collett, J.L.; Lee, T. Humidity-dependent optical properties of fine particles during the Big Bend Regional Aerosol and Visibility Observational Study. J. Geophys. Res. Atmos. 2003, 108, 4279. [Google Scholar] [CrossRef] [Green Version]
- Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; De Leeuw, J.; Mikkila, J.; Ehn, M.; Peteja, T.; Clemer, K.; Van Roozendael, M.; et al. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw. Atmos. Chem. Phys. Discuss. 2010, 10, 29683–29734. [Google Scholar] [CrossRef] [Green Version]
- Shmirko, K.; Pavlov, A.; Zubko, E. Coating effect on light scattering by irregularly shaped particles. J. Quant. Spectrosc. Radiat. Transfer 2018, 215, 71–76. [Google Scholar] [CrossRef]
- Yan, P.; Pan, X.; Tang, J.; Zhou, X.; Zhang, R.; Zeng, L. Hygroscopic growth of aerosol scattering coefficient: Acomparative analysis between urban and suburban sites at winter in Beijing. Particuology 2009, 7, 52–60. [Google Scholar] [CrossRef]
- Coen, M.C.; Weingartner, E.; Apituley, A.; Ceburnis, D. Minimizing light absorption measurement artifacts of the Aethalometer: Evaluation of five correction algorithms. Atmos. Meas. Tech. 2010, 3, 457–474. [Google Scholar] [CrossRef] [Green Version]
- WMO and GAW. Report: World Meteorological Organization and Global Atmosphere Watch Report: Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd ed.; Baltensperger, U., Benedetti, A., Fiebig, M., Popp, T.H., Kinne, S., Laj, P., Li, S.M., Ogren, J.A., Pappalarado, G., Petzold, A., et al., Eds.; GAW Report No. 227; Chairperson Publication Board: Geneva, Switzerland, 2016.
- Burgos, M.A.; Andrews, E.; Titos, G.; Arboledas, L.A.; Baltensperger, U.; Day, D.; Jefferson, A.; Kalivitis, N.; Mihalopoulos, N.; Sherman, J.; et al. A global view on the effect of water uptake on aerosol particle light scattering. Sci. Data 2019, 6, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, W.T.; Allan, J.D.; Bower, K.N.; Esselborn, M.; Harris, B.; Henzing, J.S.; Highwood, E.J.; Scharr, A.K.; McMeeking, G.R.; Mensah, A.A.; et al. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe. Atmos. Chem. Phys. 2010, 10, 8151–8171. [Google Scholar] [CrossRef] [Green Version]
- Voss, K.J.; Welton, E.J.; Quinn, P.K.; Frouin, R.; Miller, M.; Michael, R. Aerosol optical depth measurements during the Aerosols99 experiment. J. Geophys. Res. Atmos. 2001, 106, 20811–20819. [Google Scholar] [CrossRef]
- Organization of Economic Cooperation and Development. Report: OECD Country Fact Sheet, the Governance of Land Use, Turkey; OECD Online Publication: Paris, France, 2017. [Google Scholar] [CrossRef]
- European Commission. Report: Country Report, Turkey. Communication from the Commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the Regions, No: SWD(2019) 220 Final, Com.(2019) 260 Final; European Commission Online Publication: Brussels, Belgium, 29 May 2019. [Google Scholar]
- Health and Environment Alliance (HEAL). Report: Air Pollution and Health in Turkey: Facts, Figures and Recommendation; HEAL Online Publication: Brussels, Belgium, 2015. [Google Scholar]
- European Environment Agency. Report: EEA, Air Quality in Europe, 2019; Report No: 10/2019; European Environmental Agency: Copenhagen, Denmark, 2019; ISSN 1977-8449. ISBN 978-92-9480-088-6. [Google Scholar] [CrossRef]
- NASA MODIS Webpage. Available online: http://modis.gsfc.nasa.gov (accessed on 3 May 2020).
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- NASA Earth Data Giovanni Webpage. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 3 May 2020).
- NASA GODDARD Space Flight Center AERONET. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 3 May 2020).
- Tutsak, E.; Kocak, M. Long-term measurements of aerosol optical and physical properties over the Eastern Mediterranean: Hygroscopic nature and source regions. Atmos. Environ. 2019, 207, 1–15. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Mamouri, R.E.; Nisantzi, A.; Kouremerti, N.; Retalis, A.; Paronis, D.; Tymvios, F.; Perdikou, S.; Achilleos, S.; Hadjicharalambous, M.A.; et al. Chapter 7: Air Pollution from Space. In Remote Sensing of Environment: Integrated Approaches, 1st ed.; InTech: Rijeka, Croatia, 2013; pp. 181–211. [Google Scholar] [CrossRef] [Green Version]
- Raptis, I.P.; Kazadsiz, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A decade of aersols optical properties over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Altaratz, O.; Bar-Or1, R.Z.; Wollner, U.; Koren, I. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds, 2018. Environ. Res. Lett. 2013, 8, 034025. [Google Scholar] [CrossRef]
- Wather Spark. Available online: https://weatherspark.com/y/95434/Average-Weather-in-%C4%B0stanbul-Turkey-Year-Round (accessed on 3 May 2020).
- Shaheen, A.; Wu, R.; Aldabash, M. Long-term AOD trend assessment over the Eastern Mediterranean region: A comparative study including a new merged aerosol product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Sogacheva, L.; Popp, T.; Sayer, A.M.; Dubovik, O.; Garay, M.J.; Heckel, A.; Hsu, N.C.; Jethva, H.; Kahn, R.A.; Kolmonen, P.; et al. Merging regional and global aerosol optical depth records from major available satellite products. Atmos. Chem. Phys. 2020, 20, 2031–2056. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Mattoo, S.; Sawyer, V.; Shi, Y.; Colarco, P.; Lyapustin, A.I. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech. 2018, 11, 4073–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutgens, N.; Sayer, A.M.; Heckel, A.; Hsu, C.; Jethva, H.; de Leeuw, G.; Leonard, P.J.T.; Levy, R.C.; Lipponen, A.; Lyapustin, A.; et al. Intercomparison of satellite AOD datasets for aerosol model evaluation. Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef]
- Georgoulas, A.K.; Alexandri, G.; Kourtidis, K.A.; Lelieveld, J.; Zains, P.; Poschl, U.; Levy, R.; Amiridis, A.; Marinou, E.; Tsikerdekis, A. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmos. Chem. Phys. Discuss. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, C.; Nickovic, S.; Baldasano, M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V.E. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling. J. Geophys. Res. 2006, 111, D152214. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Zhan, X.; Ma, H.; Tian, X. Evaluation of MODIS and two reanalysis aerosol optical depth products over AERONET sites. Atmos. Res. 2019, 220, 75–90. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 aerosol reanalysis, 1980 onward Part II: Evaluation and case studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Mukkavilli, S.K.; Prasad, A.A.; Taylor, R.A.; Huang, J.; Mitchell, R.M.; Troccoli, A.; Kay, M.J. Assessment of atmospheric aerosols from two reanalysis products over Australia. Atmos. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Gao, Z. Validation and accuracy assessment of MODIS C6.1 aerosol products over the heavy aerosol loading area. Atmosphere 2019, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Donkelaar, A.V.; Martin, R.V.; Levy, R.C.; Da Silva, A.M.; Krzyzanowski, M.; Chubarova, N.E.; Semutnikova, E.; Cohen, A.J. Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmos. Environ. 2011, 45, 6225–6232. [Google Scholar] [CrossRef]
- Sehatkashani, S.; Vazifedoust, M.; Kamali, G.; Bidokhti, A.A. Dust detection and AOT estimation using combined VIR and TIR satellite images in urban areas of Iran. Sci. Iran. A 2016, 23, 1984–1993. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yuan, H.; Feng, N.; Tao, S. Comparing MODIS and AERONET aerosol optical depth over China. Int. J. Remote Sens. 2009, 30, 6519–6529. [Google Scholar] [CrossRef]
- Jin, S.; Ma, Y.; Zhang, M.; Gong, W.; Dubovik, O.; Liu, B.; Shi, Y.; Yang, C. Retrieval of 500 m Aerosol Optical Depths from MODIS measurements over urban surfaces under heavy aerosol loading conditions in winter. Remote Sens. 2019, 11, 2218. [Google Scholar] [CrossRef] [Green Version]
- Mao, F.; Duan, M.; Min, Q.; Gong, W.; Pan, Z.; Liu, G. Investigating the impact of haze on MODIS cloud detection. J. Geophys. Res. Atmos. 2015, 120, 12237–12247. [Google Scholar] [CrossRef]
- McPhetres, A.; Aggarwal, S. An evaluation of MODIS-retrieved Aerosol Optical Depth over AERONET Sites in Alaska. Remote Sens. 2018, 10, 1384. [Google Scholar] [CrossRef] [Green Version]
- Xiang’ao, X. Significant overestimation of global aerosol optical thickness by MODIS over land. Chin. Sci. Bull. 2006, 51, 2905–2912. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. Atmos. 2005, 110, D10S04. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.; Kleidman, R.; Mattoo, S. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Singh, R.P.; Kafatos, M.; Singh, A. Effect of the Growing Population on the Air Pollution, Climatic Variability and Hydrological Regime of the Ganga Basin, India. In Proceedings of the Symposium S6 Held during the Seventh IAHS Scientific Assembly, Foz do Iguaçu, Brazil, 3–9 April 2005; IAHS Publication: Foz do Iguaçu, Brazil, 2005; p. 295. [Google Scholar]
- Ali, A.; Assiri, M.; Dambul, R. Seasonal Aerosol Optical Depth (AOD) Variability Using Satellite Data and its Comparison over Saudi Arabia for the Period 2002–2013. Aerosol Air Qual. Res. 2019, 17, 1267–1280. [Google Scholar] [CrossRef]
- Li, F.; Ramanthan, V. Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res. 2002, 107, 4284. [Google Scholar] [CrossRef]
- Sivaprasad, P.; Babu, C.A. Seasonal variation and classification of aerosols over an inland station in India. Meteorol. Appl. 2012, 21, 241–248. [Google Scholar] [CrossRef]
- Ayanlade, A.; Atai, G.; Jegede, M.O. Spatial and seasonal variations in atmospheric aerosols over Nigeria: Assessment of influence of intertropical discontinuity movement. J. Ocean Clim. 2019, 9, 1759313118820306. [Google Scholar] [CrossRef] [Green Version]
- Schutgens, N.A.J.; Nakata, M.; Nakajima, T. Validation and empirical correction of MODIS AOT and AE over ocean. Atmos. Meas. Tech. 2013, 6, 2455–2475. [Google Scholar] [CrossRef] [Green Version]
- Kent, G.S.; Trepte, C.R.; Skeens, K.M.; Winker, D.M. LITE and SAGE II measurements of aerosols in the Southern Hemisphere upper troposphere. J. Geophys. Res. Atmos. 1998, 103, 111–127. [Google Scholar] [CrossRef]
- Hobbs, P. Clean air slots amid atmospheric pollution. Nature 2002, 415, 861. [Google Scholar] [CrossRef]
Station | City/Country | Coordinates | AMSL a (m) | Land Use | AOD b (550 nm) |
---|---|---|---|---|---|
METU-ERDEMLI | Mersin/Turkey | 36.34° N/34.14° E | 71 | Rural Area | 0.213 |
CUT-TEPAK | Limassol/Cyprus | 34.68° N/33.04° E | 11 | Urbanized Area | 0.168 |
Athens-NOA | Athens/Greece | 37.97° N/23.72° E | 105 | Moderately Populated Area | 0.157 |
Dataset | MODIS C6.1 | MERRA-2 | ||||||
---|---|---|---|---|---|---|---|---|
Season | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn |
Station (I) | ATHENS-NOA Athens | |||||||
RH(%) | 73 | 67 | 64 | 72 | 73 | 67 | 64 | 72 |
N | 51 | 95 | 241 | 148 | 148 | 157 | 322 | 235 |
Slope | 0.604 | 0.831 | 0.882 | 0.673 | 0.564 | 0.662 | 0.691 | 0.540 |
Intercept | 0.061 | 0.063 | 0.072 | 0.094 | 0.031 | 0.054 | 0.033 | 0.062 |
R2 | 0.545 | 0.590 | 0.666 | 0.527 | 0.533 | 0.576 | 0.652 | 0.511 |
RMSE | 0.051 | 0.079 | 0.083 | 0.125 | 0.059 | 0.074 | 0.062 | 0.073 |
MAE | 0.036 | 0.061 | 0.063 | 0.079 | 0.039 | 0.053 | 0.044 | 0.047 |
Station (II) | METU-ERDEMLI Mersin | |||||||
RH(%) | 64 | 56 | 56 | 63 | 64 | 56 | 56 | 63 |
N | 101 | 176 | 277 | 183 | 120 | 235 | 323 | 215 |
Slope | 0.771 | 0.819 | 0.746 | 0.804 | 0.653 | 0.596 | 0.559 | 0.464 |
Intercept | 0.069 | 0.079 | 0.053 | 0.067 | 0.016 | 0.050 | 0.015 | 0.042 |
R2 | 0.563 | 0.641 | 0.614 | 0.560 | 0.503 | 0.567 | 0.539 | 0.520 |
RMSE | 0.071 | 0.086 | 0.079 | 0.078 | 0.069 | 0.084 | 0.137 | 0.082 |
MAE | 0.054 | 0.067 | 0.058 | 0.056 | 0.052 | 0.060 | 0.114 | 0.058 |
Station (III) | CUT-TEPAK Cyprus | |||||||
RH(%) | 56 | 64 | 65 | 63 | 56 | 64 | 65 | 63 |
N | 105 | 170 | 100 | 97 | 140 | 201 | 103 | 110 |
Slope | 0.780 | 0.794 | 0.723 | 0.921 | 0.567 | 0.646 | 0.668 | 0.435 |
Intercept | 0.054 | 0.102 | 0.111 | 0.050 | 0.030 | 0.053 | 0.062 | 0.063 |
R2 | 0.798 | 0.645 | 0.639 | 0.699 | 0.634 | 0.589 | 0.542 | 0.573 |
RMSE | 0.047 | 0.104 | 0.085 | 0.066 | 0.062 | 0.087 | 0.062 | 0.093 |
MAE | 0.036 | 0.075 | 0.060 | 0.048 | 0.040 | 0.048 | 0.049 | 0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldabash, M.; Bektas Balcik, F.; Glantz, P. Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey. Atmosphere 2020, 11, 905. https://doi.org/10.3390/atmos11090905
Aldabash M, Bektas Balcik F, Glantz P. Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey. Atmosphere. 2020; 11(9):905. https://doi.org/10.3390/atmos11090905
Chicago/Turabian StyleAldabash, Midyan, Filiz Bektas Balcik, and Paul Glantz. 2020. "Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey" Atmosphere 11, no. 9: 905. https://doi.org/10.3390/atmos11090905
APA StyleAldabash, M., Bektas Balcik, F., & Glantz, P. (2020). Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey. Atmosphere, 11(9), 905. https://doi.org/10.3390/atmos11090905