The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature
Abstract
:1. Introduction
2. Data and Method
3. Intraseasonal Variation of the PBF
3.1. Horizontal Distribution
3.2. Multi–Year Variation of the PBF in January
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rex, D.F. Blocking action in the middle troposphere and its effect upon regional climate. I: An aerological study of blocking action. Tellus 1950, 2, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Masato, G.; Hoskins, B.J.; Woollings, T.J. Wave–breaking characteristics of midlatitude blocking. Q. J. R. Meteorol. Soc. 2012, 138, 1285–1296. [Google Scholar] [CrossRef]
- Buehler, T.; Raible, C.C.; Stocker, T.F. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA–40. Tellus 2016, 63, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Pook, M.J.; Risbey, J.S.; McIntosh, P.C.; Ummenhofer, C.C.; Marshall, A.G.; Meyers, G.A. The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall. Mon. Weather Rev. 2013, 141, 4534–4553. [Google Scholar] [CrossRef]
- Li, C.Y.; Gu, W. An analyzing study of the anomalous activity of blocking high over the Ural Mountains in January 2008. Chin. J. Atmos. Sci. 2010, 34, 865–874. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 2011, 38, 6. [Google Scholar] [CrossRef] [Green Version]
- Masato, G.; Hoskins, B.J.; Woollings, T. Wave–breaking characteristics of Northern Hemisphere winter blocking: A two–dimensional approach. J. Clim. 2013, 26, 4535–4549. [Google Scholar] [CrossRef]
- Henderson, S.A.; Maloney, E.D.; Barnes, E.A. The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Clim. 2016, 29, 4597–4616. [Google Scholar] [CrossRef]
- Henderson, S.A.; Maloney, E.D. The impact of the Madden–Julian oscillation on high–latitude winter blocking during El Niño–Southern Oscillation events. J. Clim. 2018, 31, 5293–5318. [Google Scholar] [CrossRef]
- Tibaldi, S.; Molten, F. On the operational predictability of blocking. Tellus 1990, 42, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S.C.; Croci–Maspoli, M.; Schwierz, C.; Appenzeller, C. Two–dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro–Atlantic region. Int. J. Climatol. 2006, 26, 233–249. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Gualdi, S.; Navarra, A. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Clim. 2012, 25, 6496–6509. [Google Scholar] [CrossRef]
- Berrisford, P.; Hoskins, B.J.; Tyrlis, E. Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci. 2007, 64, 2881–2898. [Google Scholar] [CrossRef]
- Pelly, J.L.; Hoskins, B.J. A new perspective on blocking. J. Atmos. Sci. 2003, 60, 743–755. [Google Scholar] [CrossRef]
- Masato, G.; Hoskins, B.J.; Woollings, T. Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Clim. 2013, 26, 7044–7059. [Google Scholar] [CrossRef]
- Rohrer, M.; Brönnimann, S.; Martius, O.; Raible, C.C.; Wild, M. Decadal variations of blocking and storm tracks in centennial reanalyses. Tellus 2019, 71, 1. [Google Scholar] [CrossRef] [Green Version]
- Lupo, A.; Jensen, A.; Mokhov, I.; Timazhev, A.; Eichler, T.; Efe, B. Changes in global blocking character in recent decades. Atmosphere 2019, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Joyce, T.M.; Ummenhofer, C.C.; Seo, H.; Kwon, Y. –O. Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. J. Clim. 2020, 33, 867–892. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Martineau, P.; Son, S.W.; Miyasaka, T.; Nakamura, H.J.J.o.t.A.S. The role of transient eddies in North Pacific blocking formation and its seasonality. J. Atmos. Sci. 2020, 77, 2453–2470. [Google Scholar] [CrossRef]
- Davini, P.; D’Andrea, F. Northern hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Clim. 2016, 29, 8823–8840. [Google Scholar] [CrossRef]
- Hinton, T.J.; Hoskins, B.J.; Martin, G.M. The influence of tropical sea surface temperatures and precipitation on north Pacific atmospheric blocking. Clim. Dyn. 2009, 33, 549–563. [Google Scholar] [CrossRef]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Tim, L. The role of intraseasonal variability at mid–high latitudes in regulating Pacific blockings during boreal winter. Int. J. Climatol. 2017, 37, 1248–1256. [Google Scholar] [CrossRef]
- Woollings, T.; Hoskins, B.; Blackburn, M.; Berrisford, P. A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA–interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Barriopedro, D.; Garcí-Herrera, R.; Trigo, R.M. Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme. Clim. Dyn. 2010, 35, 1373–1391. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Luo, D.; Zhong, L. Effects of northern hemisphere atmospheric blocking on arctic sea ice decline in winter at weekly time scales. Atmosphere 2018, 9, 331. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Yang, S.; Li, T. The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature. Atmosphere 2020, 11, 960. https://doi.org/10.3390/atmos11090960
Gao M, Yang S, Li T. The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature. Atmosphere. 2020; 11(9):960. https://doi.org/10.3390/atmos11090960
Chicago/Turabian StyleGao, Mingxiang, Shuangyan Yang, and Tim Li. 2020. "The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature" Atmosphere 11, no. 9: 960. https://doi.org/10.3390/atmos11090960
APA StyleGao, M., Yang, S., & Li, T. (2020). The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature. Atmosphere, 11(9), 960. https://doi.org/10.3390/atmos11090960