Weather in the Hungarian Lowland from the Point of View of Humans
Abstract
:1. Introduction
2. Methods
2.1. Clothing Resistance Model
2.2. Heath–Carter Somatotype Classification Method
2.3. Thermal Load and Thermal Sensation Data Treatment
3. Locations
4. Data
4.1. Weather Data
4.2. Human Data
5. Results
5.1. Heath–Carter Somatotype Classification Results
5.2. Individual Thermal Sensation–Thermal Load Relationships
5.3. Weather Variations from the Point of View of Individual Human Thermal Loads and Sensations
5.4. Comparison of the Effect of Inter-Person Variation and the Effect of Weather Variation between the Cities of Sopron and Szeged
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, R.K. The Assessment of the Thermal Environment. A Review. Occup. Environ. Med. 1962, 19, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.L. Vortrag. Roy. Soc. NSW (Public Health Sect. 14.11.1916) 1916, 14, 1916. [Google Scholar]
- Arnoldy, I.A. Acclimatization of the Man in North and South; Medgiz: Moscow, Russia, 1962. (In Russian) [Google Scholar]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–60. [Google Scholar] [CrossRef]
- Missenard, A. Etude Physiologique et Technique de la Ventilation; Léon Eyrolles: Paris, France, 1933. [Google Scholar]
- Gregorczuk, M. Bioclimates of the world related to air enthalpy. Int. J. Biometeorol. 1968, 12, 35–39. [Google Scholar] [CrossRef]
- Gagge, A.P. Standard operative temperature, a single measure of the combined effect of radiant temperature, of ambient temperature and of air movement on the human body. In Temperature, Its Measurement and Control in Science and Industry; Reinhold: New York, NY, USA, 1941; pp. 544–552. [Google Scholar]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. An effective temperature scale based on a simple model of human physiological temperature response. ASHRAE Trans. 1971, 72, 247–262. [Google Scholar]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical: Copenhagen, Denmark, 1970. [Google Scholar]
- Jendritzky, G.; Staiger, H.; Bucher, K.; Graetz, A.; Laschewski, G. The perceived temperature—the method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. In Proceedings of the Internet Workshop on Windchill, Hosted by Environment Canada, Offenbach, Germany, 3–7 April 2000; German Weather Service. [Google Scholar]
- Jendritzky, G.; Havenith, G.; Weihs, P.; Batchvarova, E. Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being; Final Report COST Action 730; University Freiburg: Freiburg, Germany, 2009. [Google Scholar]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. A standard predictive index of human responses to the thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Matzarakis, A.; Mayer, H. Heat stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Höppe, P. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef]
- Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Höppe, P. The physiological equivalent temperature—A universal index for biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Hussein, I.; Rahaman, M.H.A. Field study on thermal comfort in Malaysia. Eur. J. Sci. Res. 2009, 37, 127–145. [Google Scholar]
- Kampmann, B.; Bröde, P.; Fiala, D. Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int. J. Biometeorol. 2012, 56, 505–513. [Google Scholar] [CrossRef]
- Becker, S.; Potchter, O.; Yaakov, Y. Calculated and observed human thermal sensation in an extremely hot and dry climate. Energy Build. 2003, 35, 747–756. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Jiao, D.; Garb, Y. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. Int. J. Biometeorol. 2014, 58, 2111–2127. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Another kind of environmental stress: Thermal stress. WHO News 1996, 18, 7–10. [Google Scholar]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Kántor, N.; Gulyás, Á.; Égerházi, L.; Unger, J. Complex human comfort studies in urban environment—Part II. Légkör 2010, 55, 115–126. (In Hungarian) [Google Scholar]
- Németh, Á. Changing thermal bioclimate in some Hungarian cities. Acta Climatol. Chorol. Univ. Szeged. 2011, 44–45, 93–101. [Google Scholar]
- Gulyás, Á.; Unger, J.; Matzarakis, A. Assessment of the microclimatic and human comfort conditions in a complex urban environment: Modelling and measurements. Build. Environ. 2006, 41, 1713–1722. [Google Scholar] [CrossRef]
- Gulyás, Á. Differences in human comfort conditions within a complex urban environment: A case study. Acta Climatol. Chorol. Univ. Szeged. 2005, 38–39, 71–84. [Google Scholar]
- Unger, J.; Gulyás, Á.; Matzarakis, A. Effects of the different inner city micro-environments on the human bioclimatological comfort sensation (in Hungarian). Légkör 2005, 50, 9–14. [Google Scholar]
- Kovács, A.; Németh, Á. Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatol. Chorol. Univ. Szeged. 2012, 46, 115–124. [Google Scholar]
- Gulyás, Á.; Matzarakis, A.; Unger, J. Differences in the thermal bioclimatic conditions on the urban and rural areas in a Southern Hungarian city (Szeged). Ber. Des Meteorol. Inst. Der Albert Ludwigs Univ. Freibg. 2009, 18, 229–234. [Google Scholar]
- Gulyás, Á.; Unger, J. Modification effects of city on human bioclimatic conditions. In Települési környezet; Szabó, V., Fazekas, I., Eds.; University of Debrecen: Debrecen, Hungary, 2009; pp. 167–172. (In Hungarian) [Google Scholar]
- Kántor, N.; Égerházi, L.; Unger, J. Subjective estimation of thermal environment in recreational urban spaces–Part 1: Investigations in Szeged, Hungary. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar] [CrossRef]
- Unger, J.; Skarbit, N.; Kovács, A.; Gál, T. Comparison of regional and urban outdoor thermal stress conditions in heatwave and normal summer periods: A case study. Urban Clim. 2020, 32, 100619. [Google Scholar] [CrossRef]
- Kovács, A.; Unger, J. Modification of the Tourism Climatic Index to Central European climatic conditions—Examples. Időjárás 2014, 118, 147–166. [Google Scholar]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ács, F.; Kristóf, E.; Zsákai, A. New clothing resistance scheme for estimating outdoor environmental thermal load. Geogr. Pannonica 2019, 23, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Breuer, H. Carpathian Basin climate according to Köppen and a clothing resistance scheme. Theor. Appl. Climatol. 2020, 141, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Zsákai, A.; Mascie-Taylor, N.; Bodzsár, É.B. Relationship between some indicators of reproductive history, body fatness and the menopausal transition in Hungarian women. J. Physiol. Anthropol. 2015, 34, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Breuer, H. Human thermal climate of the Carpathian Basin. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Zeiler, W. Thermophysiological models and their applications: A review. Build. Environ. 2016, 106, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Mihailović, D.T.; Ács, F. Calculation of daily amounts of global radiation in Novi Sad. Időjárás 1985, 89, 257–261. (In Hungarian) [Google Scholar]
- Weyand, P.G.; Smith, B.R.; Puyau, M.R.; Butte, N.F. The mass-specific energy cost of human walking is set by stature. J. Exp. Biol. 2010, 213, 3972–3979. [Google Scholar] [CrossRef] [Green Version]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Non-obese and Obese Adults: A Systematic Review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Dubois, D.; Dubois, E.F. The Measurement of the Surface Area of Man. Arch. Intern. Med. 1915, 15, 868–881. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998; 286p. [Google Scholar]
- Auliciems, A.; Kalma, J.D. A Climatic Classification of Human Thermal Stress in Australia. J. Appl. Meteorol. 1979, 18, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge University Press: Cambridge, UK, 1990; p. 503. [Google Scholar]
- Carter, J.L. Part 1: The Heath-Carter Anthropometric Somatotype-Instruction Manual; Department of Exercise and Nutritional Sciences, San Diego State University: San Diego, CA, USA, 2002; Available online: https://www.mdthinducollege.org/ebooks/statistics/Heath-CarterManual.pdf (accessed on 15 August 2020).
- Ács, F.; Breuer, H.; Skarbit, N. Climate of Hungary in the twentieth century according to Feddema. Theor. Appl. Climatol. 2015, 119, 161–169. [Google Scholar] [CrossRef]
- Gulyás, Á.; Matzarakis, A. Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Időjárás 2009, 113, 221–231. [Google Scholar]
- Gulyás, Á. Human Bioclimatic Assessments at Different Scales. Ph.D. Thesis, Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary, 2009; p. 114. (In Hungarian). [Google Scholar]
- Kántor, N.; Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Cent. Eur. J. Geosci. 2011, 3, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Kántor, N. Differences between the evaluation of thermal environment in shaded and sunny position. Hung. Geogr. Bull. 2016, 65, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulos, I.; Nouri, A.S. Investigating the Behaviour of Human Thermal Indices under Divergent Atmospheric Conditions: A Sensitivity Analysis Approach. Atmosphere 2019, 10, 580. [Google Scholar] [CrossRef] [Green Version]
Persons | Sex | Age (Years) | Body Mass (kg) | Body Length (cm) | Basal Metabolic Heat Flux Density (Wm−2) | Walking Energy Flux Density (Wm−2) | Total Energy Flux Density (Wm−2) |
---|---|---|---|---|---|---|---|
Person 1 | male | 64 | 89.0 | 190.0 | 40.8 | 94.5 | 135.3 |
Person 2 | female | 34 | 64.5 | 160.5 | 38.6 | 103.9 | 142.5 |
Person 3 | female | 45 | 68.7 | 165.1 | 37.3 | 102.7 | 140.0 |
Person 4 | male | 24 | 80.0 | 176.0 | 44.6 | 100.7 | 145.3 |
Person 5 | female | 20 | 55.0 | 169.0 | 40.6 | 86.9 | 127.5 |
Person 6 | female | 24 | 70.6 | 173.8 | 40.0 | 94.0 | 134.0 |
Persons | Sex | Somatotype Components | Somatotype Category | M (Wm−2) |
---|---|---|---|---|
P5 | female | 4.5–2.5–4.0 | ectomorph–endo-morph | 127.5 |
P1 | male | 3.5–4.0–2.0 | mesomorph–endomorph | 135.3 |
P3 | female | 6.0–5.0–1.0 | mesomorph–endomorph | 140.0 |
P2 | female | 9.0–3.5–1.0 | mesomorph–endomorph | 144 |
P4 | male | 7.5–4.0–1.5 | mesomorph–endomorph | 145.3 |
P6 | female | 6.1–2.4–2.0 | balanced-endomorph | 134.0 |
Thermal Sensation Type | Operative Temperature (To) Range (°C) | Clothing Resistance (rcl) Range (clo) |
---|---|---|
very warm | To > 65 | rcl ≤ −2.4 |
warm | 45 < To < 60 | −2 < rcl < −1.1 |
slightly warm | 30 < To ≤ 45 | −1.1 ≤ rcl < −0.5 |
neutral | 15 < To ≤ 30 | −0.5 ≤ rcl ≤ 0.5 |
cool | 5 ≤ To ≤ 15 | 0.5 < rcl ≤ 1.2 |
cold | −8 < To < 5 | 1.2 < rcl < 1.7 |
very cold | −8 ≥ To | 1.7 ≤ rcl |
Case | Meteorological Conditions | Thermal Load | Thermal Sensation | ||||||
---|---|---|---|---|---|---|---|---|---|
Ta (°C) | rsd | N | Wind (ms−1) | rh (%) | p (hPa) | To (°C) | rcl (clo) | ||
1 | 33.1 | 0 | 0.4 | 1.7 | 44 | 1015 | 42.8 | −1.01 | slightly warm |
2 | 33.1 | 1 | 0.4 | 1.7 | 44 | 1015 | 69.1 | −2.60 | very warm |
3 | 33.1 | 0 | 0.4 | 3.1 | 44 | 1015 | 41.3 | −0.85 | |
4 | 33.1 | 1 | 0.4 | 3.1 | 44 | 1015 | 63.6 | −2.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ács, F.; Kristóf, E.; Zsákai, A.; Kelemen, B.; Szabó, Z.; Marques Vieira, L.A. Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere 2021, 12, 84. https://doi.org/10.3390/atmos12010084
Ács F, Kristóf E, Zsákai A, Kelemen B, Szabó Z, Marques Vieira LA. Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere. 2021; 12(1):84. https://doi.org/10.3390/atmos12010084
Chicago/Turabian StyleÁcs, Ferenc, Erzsébet Kristóf, Annamária Zsákai, Bertold Kelemen, Zita Szabó, and Lara Amanda Marques Vieira. 2021. "Weather in the Hungarian Lowland from the Point of View of Humans" Atmosphere 12, no. 1: 84. https://doi.org/10.3390/atmos12010084
APA StyleÁcs, F., Kristóf, E., Zsákai, A., Kelemen, B., Szabó, Z., & Marques Vieira, L. A. (2021). Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere, 12(1), 84. https://doi.org/10.3390/atmos12010084