Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Chemical Analysis
2.3. Unmix
2.4. Human Health Risk Assessment
2.5. Air Mass Backward Trajectory and Cluster Analysis
3. Results
3.1. Pollution Characteristics of PM2.5
3.2. Pollution Characteristics of Heavy Metals in PM2.5
3.3. Source Apportionment by Unmix
3.4. Health Risk Assessment
3.4.1. Non-Carcinogenic Risk
3.4.2. Carcinogenic Risk
3.5. Potential Local and Regional Sources
3.5.1. Potential Local Sources
3.5.2. Potential Regional Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Sun, J.L.; Zhou, M.Y.; Cheng, Z.G.; Li, Q.C.; Cao, X.Y.; Zhang, J.J. Observational analyses of dramatic developments of a severe air pollution event in the Beijing area. Atmos. Chem. Phys. 2018, 18, 3919–3935. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F.F.; Su, J.; Meng, C.C.; Zhang, Q. The 2013 severe haze over the southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmos. Chem. Phys. 2014, 14, 3151–3173. [Google Scholar] [CrossRef] [Green Version]
- Song, C.B.; Wu, L.; Xie, Y.C.; He, J.J.; Chen, X.; Wang, T.; Lin, Y.C.; Jin, T.S.; Wang, A.X.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, X.Y.; Li, C.; Ding, H.J.; Tang, L.; Ji, H.B. Characteristics of PM2.5 in Miyun, the northeastern suburb of Beijing: Chemical composition and evaluation of health risk. Environ. Sci. Pollut. Res. 2015, 22, 16688–16699. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef] [Green Version]
- IARC. IARC Monographs. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields; International Agency for Research on Cancer: Lyon, France, 2013; Volume 102.
- Zhang, H.; Mao, Z.; Huang, K.; Wang, X.; Cheng, L.; Zeng, L.; Zhou, Y.K.; Jing, T. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environ. Int. 2019, 129, 517–524. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhang, Y.L.; Song, W.H.; Yang, X.Y.; Fan, M.Y. Specific sources of health risks caused by size -resolved PM -bound metals in a typical coal-burning city of northern China during the winter haze event. Sci. Total Environ. 2020, 734, 138651. [Google Scholar] [CrossRef]
- Zhang, A.H.; Feng, H.; Yang, G.H.; Pan, X.L.; Jiang, X.Y.; Huang, X.X.; Dong, X.X.; Yang, D.P.; Xie, Y.X.; Peng, L.; et al. Unventilated indoor coalfired stoves in Guizhou Province, China: Cellular and genetic damage in villagers exposed to arsenic in food and air. Environ. Health Perspect. 2007, 115, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.J.; Zhang, Y.R.; Qiu, Y.Q.; Zhang, H.L.; Du, W.J.; Xu, L.L.; Hong, Y.-W.; Chen, Y.T.; Chen, J.S. Source apportionment of PM 2.5 at the Lin’an regional background site in China with three receptor models. Atmos. Res. 2018, 202, 23–32. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Liao, H.T.; Lee, C.L.; Tsai, W.C.; Yu, J.Z.; Tsai, S.W.; Chou, C.C.K.; Wu, C.F. Source apportionment of urban PM2.5 using positive matrix factorization with vertically distributed measurements of trace elements and nonpolar organic compounds. Atmos. Pollut. Res. 2021, 12, 200–207. [Google Scholar] [CrossRef]
- Ragosta, M.; Caggiano, R.; Macchiato, M.; Sabia, S.; Trippetta, S. Trace elements in daily collected aerosol: Level characterization and source identification inafour-yearstudy. Atmos. Res. 2008, 89, 206–217. [Google Scholar] [CrossRef]
- Pancras, J.P.; Landis, M.S.; Norris, G.A.; Vedantham, R.; Dvonch, J.T. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci. Total Environ. 2013, 448, 2–13. [Google Scholar] [CrossRef]
- Kelley, D.; Nater, E. Source apportionment of lake bed sediments to watersheds in an Upper Mississippi basin using a chemical mass balance method. Catena 2000, 41, 277–292. [Google Scholar] [CrossRef]
- Kleinman, M.T.; Pasternack, B.S.; Eisenbud, M.; Kneip, T.J. Identifying and estimating the relative importance of sources of airborne particulates. Environ. Sci. Technol. 1980, 14, 62–65. [Google Scholar] [CrossRef]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2007, 156, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.C. History and fundamentals of multivariate air quality receptor models. Chemom. Intell. Lab. Syst. 1997, 37, 37–42. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Choudhary, N.; Masiwal, R.; Saxena, M.; Sharma, A.; Mandal, T.K.; Gupta, A.; Gupta, N.C.; Sharma, C. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ. Sci. Pollut. Res. 2017, 24, 14637–14656. [Google Scholar] [CrossRef]
- Murari, V.; Singh, N.; Ranjan, R.; Singh, R.S.; Banerjee, T. Source apportionment and health risk assessment of airborne particulates over central Indo-Gangetic Plain. Chemosphere 2020, 257, 127145. [Google Scholar] [CrossRef]
- Xu, X.M.; Zhang, W.; Zhu, C.; Li, J.R.; Wang, J.; Li, P.C.; Zhao, P.Y. Health risk and external costs assessment of PM2.5 in Beijing during the “Five-year Clean Air Action Plan”. Atmos. Pollut. Res. 2021, 12. [Google Scholar] [CrossRef]
- Ma, Q.X.; Wu, Y.F.; Zhang, D.Z.; Wang, X.J.; Xia, Y.J.; Liu, X.Y.; Tian, P.; Han, Z.W.; Xia, X.G.; Wang, Y.; et al. Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Sci. Total Environ. 2017, 599–600, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Hai, S.F.; Zhao, Y.H.; Sheng, L.F.; Zhou, Y.; Wang, W.C.; Li, W.S. Numerical modeling of regional transport of PM2.5 during a severe pollution event in the Beijing–Tianjin–Hebei region in November 2015. Atmos. Environ. 2021, 254, 118393. [Google Scholar] [CrossRef]
- Grange, S.K.; Lewis, A.C.; Carslaw, D.C. Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmos. Environ. 2016, 145, 128–134. [Google Scholar] [CrossRef]
- Chen, P.; Bi, X.; Zhang, J.; Wu, J.; Feng, Y. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 2014, 20, 104–109. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.X.; Su, H.; Liu, S.X.; Zhou, J.M.; Zhao, Z.Z.; Wang, Q.Y.; Prévôt, A.S.H.; Cao, J.J. Effects of Aerosol Water Content on the formation of secondary inorganic aerosol during a Winter Heavy PM2.5 Pollution Episode in Xi’an, China. Atmos. Environ. 2021, 252. [Google Scholar] [CrossRef]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef]
- Henry, R.C. Multivariate receptor modeling by N-dimensional edge detection. Chemom. Intell. Lab. Syst. 2003, 65, 179–189. [Google Scholar] [CrossRef]
- Norris, G.; Vedantham, R.; Duvall, R.; Henry, R.C. EPA Unmix 6.0 Fundamentals and User Guide, EPA/600/R07/089. June 2007. Available online: http://www.epa.gov/heasd/products/unmix/unmix.html (accessed on 2 June 2021).
- Cai, K.; Li, C.; Na, S. Spatial Distribution, Pollution Source, and Health Risk Assessment of Heavy Metals in Atmospheric Depositions: A Case Study from the Sustainable City of Shijiazhuang, China. Atmosphere 2019, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Q.; Zhang, W.L.; Dong, S.Y.; Yonemachi, S.; Lu, S.L.; Wang, Q.Y. Characterization, Pollution Sources, and Health Risk of Ionic and Elemental Constituents in PM2.5 of Wuhan, Central China. Atmosphere 2020, 11, 760. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) EPA-540-R-070-002, OSWER 9285.7-82. January 2009. Available online: http://www.epa.gov/swerrims/riskassessment/ragsf/index.htm (accessed on 2 June 2021).
- PRCMEE. Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction (HJ 25.3-2019). 2019. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201912/t20191224_749893.shtml (accessed on 5 June 2021).
- Zhao, S.; Li, J.; Sun, C. Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation. Sci. Rep. 2016, 6, 27424. [Google Scholar] [CrossRef] [PubMed]
- PRCMEE. Ambient Air Quality Standards (GB 3095-2012). 2012. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 1 July 2021).
- Krzyzanowski, M. WHO air quality guidelines for Europe. J. Toxicol. Environ. Health Part A 2008, 71, 47–50. [Google Scholar] [CrossRef] [PubMed]
- USEPA. National Ambient Air Quality Standards for Particulate Matter. 2013. Available online: https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm (accessed on 2 July 2021).
- Shao, Z.J.; Yin, X.J.; Bi, J.; Ma, Z.W.; Wang, J.N. Spatiotemporal Variations of Indoor PM2.5 Concentrations in Nanjing, China. Int. J. Environ. Res. Public Health 2019, 16, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Yan, J.J.; Wei, Y.C.; Zeng, J.J.; Wang, X.Y.; Chen, X.Y.; Zhang, C.R.; Li, W.D.; Chen, M.; Idani, E.; et al. Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated Middle Eastern city. Toxin Rev. 2020, 39, 266–274. [Google Scholar]
- Liu, Y.; Hu, J.; Wang, X.R.; Jia, J.; Li, J.; Wang, L.; Hao, L.; Gao, P. Distribution, bioaccessibility, and health risk assessment of heavy metals in PM2.5 and PM10 during winter heating periods in five types of cities in Northeast China. Ecotoxicol. Environ. Saf. 2021, 214, 112071. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.X.; Xu, H.M.; Liu, S.X.; Zhang, Y.; Zhang, N.N.; Zhou, J.M.; Chow, J.C.; Watson, J.G.; Cao, J.J. Spatial distribution of PM2.5-bound elements in eighteen cities over China: Policy implication and health risk assessment. Environ. Geochem. Health 2021. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Chen, L.; Zhou, R. Effects of Internal Partitions on Flow Field and Air Contaminant Distribution under Different Ventilation Modes. Int. J. Environ. Res. Public Health 2018, 15, 2603. [Google Scholar] [CrossRef] [Green Version]
- Izhar, S.; Goel, A.; Chakraborty, A.; Gupta, T. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 2016, 146, 582–590. [Google Scholar] [CrossRef]
- Yatkin, S.; Bayram, A. Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmos. Res. 2007, 85, 126–139. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gupta, T. Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol Air Qual. Res. 2010, 10, 433–445. [Google Scholar] [CrossRef]
- Atiemo, M.S.; Ofosu, G.F.; Kuranchie-Mensah, H.; Tutu, A.O.; Linda Palm, N.D.M.; Blankson, S.A. Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana. Res. J. Environ. Earth Sci. 2011, 3, 473–480. [Google Scholar]
- Chen, R.; Jia, B.; Tian, Y.Z.; Feng, Y.C. Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: Insights into seasonal and diurnal variations. Ecotoxicol. Environ. Saf. 2021, 216, 112167. [Google Scholar] [CrossRef]
- Tian, H.Z.; Cheng, K.; Wang, Y.; Zhao, D.; Lu, L.; Jia, W.X.; Hao, J.M. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmos. Environ. 2012, 50, 157–163. [Google Scholar] [CrossRef]
- Ge, S.; Xu, X.; Chow, J.C.; Watson, J.; Sheng, Q.; Liu, W.L.; Bai, Z.P.; Zhu, T.; Zhang, J.F. Emissions of air pollutants from household stoves: Honeycomb coal versus coal cake. Environ. Sci. Technol. 2004, 38, 4612–4618. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J. Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Mode. Energy Fuels 2002, 16, 222–260. [Google Scholar] [CrossRef]
- Xu, S.; Tao, S. Coregionalization Analysis of Heavy Metals in the Surface Soil of Inner Mongolia. Sci. Total Environ. 2004, 320, 73–87. [Google Scholar] [CrossRef]
- Yan, G.P.; Zhang, P.Z.; Yang, J.; Zhang, J.W.; Zhu, G.F.; Cao, Z.G.; Fan, J.; Liu, Z.R.; Wang, Y.S. Chemical characteristics and source apportionment of PM2.5 in a petrochemical city: Implications for primary and secondary carbonaceous component. J. Environ. Sci. 2021, 103, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.T.; Tang, G.Q.; Lv, B.; Li, X.R.; Wu, X.R.; Wang, Y.M.; Wang, Y.S. Source apportionment of PM2.5 and visibility in Jinan, China. J. Environ. Sci. 2021, 102, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.L.; Li, X.L.; Maa, K.; Liang, S.X. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef]
- Lou, J.L.; Yu, S.K.; Feng, L.F.; Guo, X.N.; Wang, M.; Branco, A.T.; Li, T.; Lemos, B. Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. Environ. Int. 2021, 153, 106525. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liang, Y.H.; Liang, N.J.; Zhang, Y.J.; Xiao, F. Identification and functional analysis of senescence-associated secretory phenotype of premature senescent hepatocytes induced by hexavalent chromium. Ecotoxicol. Environ. Saf. 2021, 211, 111908. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, Y.; Wang, H.H.; Wei, Y.T.; Yuan, Y.; Zhou, Q.Q.; Fang, F.; Shi, S.N.; Jiang, X.J.; Dong, Y.Q.; et al. Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure. J. Hazard. Mater. 2021, 417, 125997. [Google Scholar] [CrossRef]
- Bozack, A.K.; Boileau, P.; Wei, L.Q.; Hubbard, A.E.; Sillé, F.C.M.; Ferreccio, C.; Acevedo, J.; Hou, L.F.; Ilievski, V.; Steinmaus, C.M.; et al. Exposure to arsenic at different life-stages and DNA methylation meta-analysis in buccal cells and leukocytes. Environ. Health 2021, 20, 79. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.; Ji, H.; Li, C.; Ding, H.; Briki, M.; Tang, L.; Zhang, Y. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmos. Res. 2016, 178–179, 6–16. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.H.; Wang, C. Chemical partitioning of fine particle-bound metals on haze–fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmos. Res. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Duan, X.; Yan, Y.; Li, R.; Deng, M.; Hu, D.; Peng, L. Seasonal variations, source apportionment, and health risk assessment of trace metals in PM2.5 in the typical industrial city of changzhi, China. Atmos. Pollut. Res. 2020, 12, 365–374. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, L.T.; Chen, M.Z.; Zheng, Y. The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmos. Pollut. Res. 2014, 5, 759–768. [Google Scholar] [CrossRef] [Green Version]
Country/Organization | Class | 24-h Limit (μg/m3) | Annual Limit (μg/m3) | Reference |
---|---|---|---|---|
Chinese (CAAQS) | I | 35 | 15 | [35] |
II | 75 | 35 | ||
USEPA (NAAQS) | I | 35 | 12 | [36] |
II | 15 | |||
WHO (AQG) | 25 | 10 | [37] |
Year | Ti | V | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | Average | 49.35 | 3.3 | 6.44 | 64.84 | 3.7 | 21.72 | 316.78 | 31.14 | 5.67 a | 224.17 |
C·V | 1.34 | 1.41 | 0.73 | 0.63 | 1.07 | 0.86 | 0.58 | 0.67 | 0.57 | 0.68 | |
2015 | Average | 34.62 | 2.2 | 12.64 | 28.29 | 18.08 | 13.5 | 187.76 | 13.47 | 4.85 | 114.99 |
C·V | 1.02 | 0.66 | 1.14 | 0.67 | 0.91 | 0.66 | 0.75 | 1.1 | 1.3 | 0.82 | |
2017 | Average | 12.62 | 2.47 | 11.11 | 31.55 | 2.11 | 23.17 | 286.87 | 11.94 | 2.74 | 104.26 |
C·V | 0.91 | 0.81 | 0.57 | 0.73 | 1.12 | 0.90 | 0.81 | 0.95 | 1.20 | 0.96 | |
Limit valve | - | - | 0.025 b | - | 25 c | - | - | 6 a | 5 a | 500 a |
Groups | Year | Cr | Ni | As | Cd | Pb | CRT |
---|---|---|---|---|---|---|---|
Adults | 2013 | 7.48 × 10−6 | 1.11 × 10−7 | 1.43 × 10−5 | 1.08 × 10−6 | 1.91 × 10−6 | 2.49 × 10−5 |
2015 | 1.48 × 10−5 | 4.73 × 10−7 | 6.20 × 10−6 | 1.39 × 10−6 | 9.99 × 10−7 | 2.39 × 10−5 | |
2017 | 1.24 × 10−5 | 5.16 × 10−8 | 5.17 × 10−6 | 1.04 × 10−6 | 8.44 × 10−7 | 1.95 × 10−5 | |
Children | 2013 | 1.86 × 10−6 | 6.77 × 10−9 | 3.56 × 10−6 | 6.59 × 10−8 | 4.74 × 10−7 | 5.96 × 10−6 |
2015 | 3.80 × 10−6 | 1.19 × 10−7 | 1.59 × 10−6 | 2.39 × 10−7 | 2.53 × 10−7 | 6.00 × 10−6 | |
2017 | 3.11 × 10−6 | 1.29 × 10−8 | 1.32 × 10−6 | 1.26 × 10−7 | 2.13 × 10−7 | 4.78 × 10−6 | |
n | 344 | 264 | 344 | 264 | 344 | - |
Location | Year | Carcinogenic Risk | Reference | ||||
---|---|---|---|---|---|---|---|
Cr | Ni | As | Cd | Pb | |||
Handan | 2017 | 1.25 × 10−5 | 5.18 × 10−8 | 5.20 × 10−6 | 5.06 × 10−7 | 8.51 × 10−7 | This Study |
Tianjin | 2012 | 1.21 × 10−8 | 7.72 × 10−9 | 1.53 × 10−8 | 1.26 × 10−8 | - | [25] |
Wuhan | 2013 | 4.05 × 10−5 | 2.12 × 10−6 | 2.93 × 10−6 | 3.35 × 10−7 | 5.09 × 10−7 | [31] |
Baoding | 2015 | 2.65 × 10−4 | 7.03 × 10−8 | 9.40 × 10−7 | 7.03 × 10−8 | - | [55] |
Beijing | 2013 | 2.72 × 10−5 | 3.04 × 10−8 | - | 1.10 × 10−5 | - | [60] |
Nanjing | 2013 | 4.53 × 10−6 | 2.91 × 10−8 | 4.72 × 10−7 | 1.11 × 10−7 | 1.07 × 10−7 | [61] |
Changzhi | 2018 | 8.30 × 10−6 | 5.00 × 10−8 | 1.66 × 10−6 | 1.00 × 10−7 | - | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, A.; Zhang, H.; Wang, L.; Wang, Q.; Wu, X. Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. Atmosphere 2021, 12, 1232. https://doi.org/10.3390/atmos12101232
Cai A, Zhang H, Wang L, Wang Q, Wu X. Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. Atmosphere. 2021; 12(10):1232. https://doi.org/10.3390/atmos12101232
Chicago/Turabian StyleCai, Angzu, Haixia Zhang, Litao Wang, Qing Wang, and Xiaoqi Wu. 2021. "Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China" Atmosphere 12, no. 10: 1232. https://doi.org/10.3390/atmos12101232
APA StyleCai, A., Zhang, H., Wang, L., Wang, Q., & Wu, X. (2021). Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. Atmosphere, 12(10), 1232. https://doi.org/10.3390/atmos12101232