Tri-Base Synergy in Sulfuric Acid-Base Clusters
Abstract
:1. Introduction
2. Methods
2.1. Computational Details
2.2. Tri-Base Synergistic Effects
3. Results and Discussion
3.1. Cluster Structures
3.2. Thermochemistry
- Clusters containing DMA have the highest stability;
- Having TMA present generally leads to a slight decrease in the cluster stability;
- There is high synergy between DMA and EDA.
4. Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the Direct and Indirect Radiative Forcing due to Tropospheric Aerosols: A Review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Phys. Chem. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Merikanto, J.; Spracklen, D.V.; Mann, G.W.; Pickering, S.J.; Carslaw, K.S. Impact of nucleation on global CCN. Atmos. Chem. Phys. 2009, 9, 8601–8616. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; et al. Direct Observations of Atmospheric Aerosol Nucleation. Science 2013, 339, 943–946. [Google Scholar] [CrossRef]
- Sipilää, M.; Berndt, T.; Petäjä, T.; Brus, D.; Vanhanen, J.; Stratmann, F.; Patokoski, J.; Mauldin, R.L.; Hyvärinen, A.P.; Lihavainen, H.; et al. The Role of Sulfuric Acid in Atmospheric Nucleation. Science 2010, 327, 1243–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtén, T.; Sundberg, M.R.; Vehkamäki, H.; Noppel, M.; Blomqvist, J.; Kulmala, M. Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate. J. Phys. Chem. A 2006, 110, 7178–7188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtén, T.; Torpo, L.; Sundberg, M.R.; Kerminen, V.; Vehkamäki, H.; Kulmala, M. Estimating the NH3:H2SO4 Ratio of Nucleating Clusters in Atmospheric Conditions using Quantum Chemical Methods. Atmos. Chem. Phys. 2007, 7, 2765–2773. [Google Scholar] [CrossRef] [Green Version]
- Torpo, L.; Kurtén, T.; Vehkamäki, H.; Laasonen, K.; Sundberg, M.R.; Kulmala, M. Significance of Ammonia in Growth of Atmospheric Nanoclusters. J. Phys. Chem. A 2007, 111, 10671–10674. [Google Scholar] [CrossRef]
- Herb, J.; Nadykto, A.B.; Yu, F. Large Ternary Hydrogen-bonded Pre-nucleation Clusters in the Earth’s Atmosphere. Chem. Phys. Lett. 2011, 518, 7–14. [Google Scholar] [CrossRef]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagne, S.; Ickes, L.; Kürten, A.; et al. Role of Sulphuric Acid, Ammonia and Galactic Cosmic Rays in Atmospheric Aerosol Nucleation. Nature 2011, 476, 429–433. [Google Scholar] [CrossRef]
- Almeida, J.; Schobesberger, S.; Kürten, A.; Ortega, I.K.; Kupiainen-Määttä, O.; Praplan, A.P.; Adamov, A.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; et al. Molecular Understanding of Sulphuric Acid-Amine Particle Nucleation in the Atmosphere. Nature 2013, 502, 359–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.; Wexler, A.S.; Clegg, S.L. Atmospheric Amines-Part I. A Review. Atmos. Environ. 2011, 45, 524–546. [Google Scholar] [CrossRef]
- Jen, C.N.; McMurry, P.H.; Hanson, D.R. Stabilization of Sulfuric acid Dimers by Ammonia, Methylamine, Dimethylamine, and Trimethylamine. J. Geophys. Res. Atmos. 2014, 119, 7502–7514. [Google Scholar] [CrossRef]
- Kurtén, T.; Loukonen, V.; Vehkamäki, H.; Kulmala, M. Amines are Likely to Enhance Neutral and Ion-induced Sulfuric Acid-water Nucleation in the Atmosphere More Effectively than Ammonia. Atmos. Chem. Phys. 2008, 8, 4095–4103. [Google Scholar] [CrossRef] [Green Version]
- Loukonen, V.; Kurtén, T.; Ortega, I.K.; Vehkamäki, H.; Pádua, A.A.H.; Sellegri, K.; Kulmala, M. Enhancing Effect of Dimethylamine in Sulfuric Acid Nucleation in the Presence of Water-A Computational Study. Atmos. Chem. Phys. 2010, 10, 4961–4974. [Google Scholar] [CrossRef] [Green Version]
- Nadykto, A.B.; Yu, F.; Jakovleva, M.V.; Herb, J.; Xu, Y. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters. Entropy 2011, 13, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Nadykto, A.B.; Herb, J.; Yu, F.; Xu, Y. Enhancement in the Production of Nucleating Clusters due to Dimethylamine and Large Uncertainties in the Thermochemistry of Amine-Enhanced Nucleation. Chem. Phys. Lett. 2014, 609, 42–49. [Google Scholar] [CrossRef]
- Nadykto, A.B.; Herb, J.; Yu, F.; Xu, Y.; Nazarenko, E.S. Estimating the Lower Limit of the Impact of Amines on Nucleation in the Earth’s Atmosphere. Entropy 2015, 17, 2764–2780. [Google Scholar] [CrossRef] [Green Version]
- Glasoe, W.A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D.R.; McMurry, P.H.; Jen, C. Sulfuric Acid Nucleation: An Experimental Study of the Effect of Seven Bases. J. Geophys. Res. Atmos. 2015, 120, 1933–1950. [Google Scholar] [CrossRef]
- Jen, C.N.; Bachman, R.; Zhao, J.; McMurry, P.H.; Hanson, D.R. Diamine-Sulfuric Acid Reactions are a Potent Source of New Particle Formation. Geophys. Res. Lett. 2016, 43, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Elm, J.; Jen, C.N.; Kurtén, T.; Vehkamäki, H. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid. J. Phys. Chem. A 2016, 120, 3693–3700. [Google Scholar] [CrossRef] [PubMed]
- Elm, J.; Passananti, M.; Kurtén, T.; Vehkamäki, H. Diamines Can Initiate New Particle Formation in the Atmosphere. J. Phys. Chem. A 2017, 121, 6155–6164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, F.; Xie, H.; Elm, J.; Shen, J.; Chen, J.; Vehkamäki, H. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. Environ. Sci. Technol. 2019, 53, 8785–8795. [Google Scholar] [CrossRef] [PubMed]
- Olenius, T.; Kupiainen-Määttä, O.; Ortega, I.K.; Kurtén, T.; Vehkamäki, H. Free Energy Barrier in the Growth of Sulfuric Acid-Ammonia and Sulfuric Acid-Dimethylamine Clusters. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef]
- Elm, J. Elucidating the Limiting Steps in Sulfuric Acid-Base New Particle Formation. J. Phys. Chem. A 2017, 121, 8288–8295. [Google Scholar] [CrossRef]
- Myllys, N.; Kubečka, J.; Besel, V.; Alfaouri, D.; Olenius, T.; Smith, J.N.; Passananti, M. Role of Base Strength, Cluster Structure and Charge in SulfuricAcid-Driven Particle Formation. Atmos. Chem. Phys. 2019, 19, 9753–9768. [Google Scholar] [CrossRef] [Green Version]
- Temelso, B.; Morrison, E.F.; Speer, D.L.; Cao, B.C.; Appiah-Padi, N.; Kim, G.; Shields, G.C. Effect of Mixing Ammonia and Alkylamines on Sulfate Aerosol Formation. J. Phys. Chem. A 2018, 122, 1612–1622. [Google Scholar] [CrossRef] [Green Version]
- Myllys, N.; Chee, S.; Olenius, T.; Lawler, M.; Smith, J. Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid–Amine–Ammonia Mixed Clusters. J. Phys. Chem. A 2019, 123, 2420–2425. [Google Scholar] [CrossRef]
- Li, H.; Ning, A.; Zhong, J.; Zhang, H.; Liu, L.; Zhang, Y.; Zhang, X.; Zeng, X.C.; He, H. Influence of Atmospheric Conditions on Sulfuric Acid-dimethylamine-ammonia-based New Particle Formation. Chemosphere 2020, 245, 125554. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03 Release Notes; Gaussian, Inc.: Wallingford, CT, USA, 2016; Available online: https://gaussian.com/relnotes_a03/ (accessed on 27 September 2021).
- Elm, J. An Atmospheric Cluster Database Consisting of Sulfuric Acid, Bases, Organics, and Water. ACS Omega 2019, 4, 10965–10974. [Google Scholar] [CrossRef] [Green Version]
- Riplinger, C.; Neese, F. An Efficient and Near Linear Scaling Pair Natural Orbital Based Local Coupled Cluster Method. J. Chem. Phys. 2013, 138, 034106. [Google Scholar] [CrossRef] [PubMed]
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural Triple Excitations in Local Coupled Cluster Calculations with Pair Natural Orbitals. J. Chem. Phys. 2013, 139, 134101. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 8, e1327. [Google Scholar] [CrossRef]
- Funes-Ardois, I.; Paton, R. GoodVibes: GoodVibes v1.0.1; 2016. Available online: https://github.com/patonlab/GoodVibes (accessed on 27 September 2021).
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-corrected Density Functional Theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Elm, J.; Kubečka, J.; Besel, V.; Jääskeläinen, M.J.; Halonen, R.; Kurtén, T.; Vehkamäki, H. Modeling the Formation and Growth of Atmospheric Molecular Clusters: A Review. J. Aerosol. Sci. 2020, 149, 105621. [Google Scholar] [CrossRef]
- Smith, J.N.; Draper, D.C.; Chee, S.; Dam, M.; Glicker, H.; Myers, D.; Thomas, A.E.; Lawler, M.J.; Myllys, N. Atmospheric Clusters to Nanoparticles: Recent Progress and Challenges in Closing the Gap in Chemical Composition. J. Aerosol. Sci. 2021, 153, 105733. [Google Scholar] [CrossRef]
- Elm, J.; Bilde, M.; Mikkelsen, K.V. Assessment of Binding Energies of Atmopsheric Clusters. Phys. Chem. Chem. Phys. 2013, 15, 16442–16445. [Google Scholar] [CrossRef]
- Elm, J.; Kristensen, K. Basis Set Convergence of the Binding Energies of Strongly Hydrogen-Bonded Atmospheric Clusters. Phys. Chem. Chem. Phys. 2017, 19, 1122–1133. [Google Scholar] [CrossRef]
- Schmitz, G.; Elm, J. Assessment of the DLPNO binding energies of strongly non-covalent bonded atmospheric molecular clusters. ACS Omega 2020, 5, 7601–7612. [Google Scholar] [CrossRef]
- Kubečka, J.; Besel, V.; Kurtén, T.; Myllys, N.; Vehkamäki, H. Configurational sampling of noncovalent (atmospheric) molecular clusters: Sulfuric acid and guanidine. J. Phys. Chem. A 2019, 123, 6022–6033. [Google Scholar] [CrossRef] [Green Version]
- Odbadrakh, T.T.; Gale, A.G.; Ball, B.T.; Temelso, B.; Shields, G.C. Computation of Atmospheric Concentrations of Molecular Clusters from ab initio Thermochemistry. J. Vis. Exp. 2020, 158, e60964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elm, J. Clusteromics I: Principles, Protocols and Applications to Sulfuric Acid-Base Cluster Formation. ACS Omega 2021, 6, 7804–7814. [Google Scholar] [CrossRef]
- Elm, J. Clusteromics II: Methanesulfonic Acid-Base Cluster Formation. ACS Omega 2021, 6, 17035–17044. [Google Scholar] [CrossRef]
- Temelso, B.; Mabey, J.M.; Kubota, T.; Appiah-Padi, N.; Shields, G.C. ArbAlign: A Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn–Munkres Algorithm. J. Chem. Inf. Model 2017, 57, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Kildgaard, J.V.; Mikkelsen, K.V.; Bilde, M.; Elm, J. Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. J. Phys. Chem. A 2018, 122, 5026–5036. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413. [Google Scholar] [CrossRef]
- Chen, H.H.; Varner, M.E.; Gerber, R.B.; Finlayson-Pitts, B.J. Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air. J. Phys. Chem. B 2016, 120, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Elm, J.; Xie, H.; Chen, J.; Niu, J.; Vehkamäki, H. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. Environ. Sci. Technol. 2020, 54, 13498–13508. [Google Scholar] [CrossRef]
- Kürten, A.; Jokinen, T.; Simon, M.; Sipilä, M.; Sarnela, N.; Junninen, H.; Adamov, A.; Almeida, J.; Amorim, A.; Bianchi, F.; et al. Neutral Molecular Cluster Formation of Sulfuric Acid-Dimethylamine Observed in Real Time under Atmospheric Conditions. Proc. Natl. Acad. Sci. USA 2014, 111, 15019–15024. [Google Scholar] [CrossRef] [Green Version]
Classification | |||||
---|---|---|---|---|---|
(A) | w,w,w | −51.5 | −66.6 | −107.9 | −189.2 |
(MA) | m,m,m | −66.0 | −82.0 | −125.5 | −199.7 |
(DMA) | s,s,s | −75.5 | −92.2 | −137.9 | −209.2 |
(EDA) | s,s,s | −74.4 | −92.1 | −140.4 | −221.5 |
(TMA) | s,s,s | −64.8 | −82.0 | −128.7 | −214.2 |
(A)(MA)(DMA) | w,m,s | −65.2 | −81.0 | −124.2 | −198.0 |
(A)(MA)(EDA) | w,m,s | −64.2 | −80.7 | −125.6 | −205.8 |
(A)(MA)(TMA) | w,m,s | −62.3 | −78.2 | −121.4 | −198.4 |
(A)(DMA)(EDA) | w,s,s | −68.4 | −84.9 | −130.0 | −206.8 |
(A)(DMA)(TMA) | w,s,s | −65.6 | −82.0 | −126.5 | −204.3 |
(A)(TMA)(EDA) | w,s,s | −63.2 | −79.7 | −124.6 | −205.8 |
(MA)(DMA)(TMA) | m,s,s | −70.7 | −87.6 | −133.7 | −211.4 |
(MA)(DMA)(EDA) | m,s,s | −73.3 | −90.1 | −135.9 | −209.9 |
(MA)(TMA)(EDA) | m,s,s | −71.0 | −88.0 | −134.2 | −211.9 |
(DMA)(TMA)(EDA) | s,s,s | −72.2 | −89.4 | −136.1 | −214.3 |
298.15 K | 218.15K | |
---|---|---|
−0.8 | −0.7 | |
−0.3 | −0.5 | |
−1.5 | −1.3 | |
−1.2 | −1.3 | |
−1.7 | −1.7 | |
0.3 | 0.5 | |
−1.9 | −2.2 | |
−1.3 | −1.3 | |
−2.6 | −2.6 | |
−0.7 | −0.6 |
Relative Concentration | |
---|---|
(MA) | 1.1 × 10 |
(DMA) | 1.0 × 10 |
(EDA) | 1.5 × 10 |
(TMA) | 1.5 × 10 |
(A)(MA)(DMA) | 2.6 × 10 |
(A)(MA)(EDA) | 5.3 × 10 |
(A)(MA)(TMA) | 2.0 × 10 |
(A)(DMA)(EDA) | 5.8 |
(A)(DMA)(TMA) | 5.7 × 10 |
(A)(TMA)(EDA) | 1.0 × 10 |
(MA)(DMA)(TMA) | 2.8 |
(MA)(DMA)(EDA) | 2.4 × 10 |
(MA)(TMA)(EDA) | 5.1 |
(DMA)(TMA)(EDA) | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.-B.; Elm, J. Tri-Base Synergy in Sulfuric Acid-Base Clusters. Atmosphere 2021, 12, 1260. https://doi.org/10.3390/atmos12101260
Xie H-B, Elm J. Tri-Base Synergy in Sulfuric Acid-Base Clusters. Atmosphere. 2021; 12(10):1260. https://doi.org/10.3390/atmos12101260
Chicago/Turabian StyleXie, Hong-Bin, and Jonas Elm. 2021. "Tri-Base Synergy in Sulfuric Acid-Base Clusters" Atmosphere 12, no. 10: 1260. https://doi.org/10.3390/atmos12101260
APA StyleXie, H. -B., & Elm, J. (2021). Tri-Base Synergy in Sulfuric Acid-Base Clusters. Atmosphere, 12(10), 1260. https://doi.org/10.3390/atmos12101260