The Impact on Urban Air Quality of the COVID-19 Lockdown Periods in 2020: The Case of Nicosia, Cyprus
Abstract
:1. Introduction
2. Status of the Study
2.1. Site Description
2.2. Data Sources
2.3. Study Periods
3. Data Processing and Methodology Approach
4. Results and Discussion
4.1. Temporal Trends of Pollutant Concentrations
4.2. Air Quality Limit
4.3. The Pollutant Concentrations in Urban and Rural Background Areas
4.4. Meteorological Conditions
4.5. Investigation of Air Pollution Origin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lu, H.; Stratton, C.W.; Tang, Y.-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Wiley J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020, 395, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 January 2021).
- Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P.; et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyprus Government Page about COVID-19. Available online: https://www.covid19.cy/ (accessed on 10 August 2021).
- Quattrocchi, A.; Mamais, I.; Tsioutis, C.; Christaki, E.; Constantinou, C.; Koliou, M.; Pana, Z.D.; Silvestros, V.; Theophanous, F.; Haralambous, C.; et al. Extensive Testing and Public Health Interventions for the Control of COVID-19 in the Republic of Cyprus between March and May 2020. J. Clin. Med. 2020, 9, 3598. [Google Scholar] [CrossRef] [PubMed]
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. 2020. Available online: http://dx.doi.org/10.2139/ssrn.3562570 (accessed on 3 October 2021).
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, M.; Bouch, M.; Krombi, M. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quéré, C.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Coskuner, G.; Jassim, M.S.; Yusuf, A.; Aina, Y.A.; Asad Ali, A.; Mayfield, M. Changes in air quality associated with mobility trends and meteorological conditions during COVID-19 lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Henao, J.J.; Rendón, A.M.; Hernández, K.S.; Giraldo-Ramirez, P.A.; Robledo, V.; Posada-Marín, J.A.; Bernal, N.; Salazar, J.F.; Mejía, J.F. Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of Medellín, Colombia. Atmosphere 2021, 12, 1137. [Google Scholar] [CrossRef]
- Gamelas, C.; Abecasis, L.; Canha, N.; Almeida, S.M. The Impact of COVID-19 Confinement Measures on the Air Quality in an Urban-Industrial Area of Portugal. Atmosphere 2021, 12, 1097. [Google Scholar] [CrossRef]
- Feng, R.; Xu, H.; Wang, Z.; Gu, Y.; Liu, Z.; Zhang, H.; Zhang, T.; Wang, Q.; Zhang, Q.; Liu, S.; et al. Quantifying Air Pollutant Variations during COVID-19 Lockdown in a Capital City in Northwest China. Atmosphere 2021, 12, 788. [Google Scholar] [CrossRef]
- Skiriene, A.F.; Stasiškiene, Ž. COVID-19 and Air Pollution: Measuring Pandemic Impact to Air Quality in Five European Countries. Atmosphere 2021, 12, 290. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; Puliafito, E.; Camargo-Caicedo, Y.; Berná-Peña, L.L.; Ruggeri, M.F.; Lopez-Noreña, A.I.; Tames, M.F.; Cereceda-Balic, F. Spread of COVID-19, Meteorological Conditions and Air Quality in the City of Buenos Aires, Argentina: Two Facets Observed during Its Pandemic Lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the COVID-19 Pandemic Lockdown on Air Pollution in 20 Major Cities around the World. Atmosphere 2020, 11, 1189. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.F.; Pavlovic, R.; Garland, R.M.; Massague, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwa, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Mouzourides, P.; Kumar, P.; Neophytou, M.K.-A. Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean. Atmos. Environ. 2015, 107, 148–165. [Google Scholar] [CrossRef] [Green Version]
- Tsangari, H.; Paschalidou, A.K.; Kassomenos, A.P.; Vardoulakis, S.; Heaviside, C.; Georgiou, K.E.; Yamasaki, E.N. Extreme weather and air pollution effects on cardiovascular and respiratory hospital admissions in Cyprus. Sci. Total Environ. 2016, 542, 247–253. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Pandolfi, M.; Alastuey, A.; Cusack, M.; Pérez, N.; Moreno, T.; Viana, M.; Mihalopoulos, N.; Kallos, G.; et al. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 2009, 43, 4266–4277. [Google Scholar] [CrossRef]
- Ministry of Labour, Welfare, and Social Insurance, Government of Cyprus. Air Quality and Strategic Planning Section of Department of Labour Inspection (DLI). Available online: https://www.airquality.dli.mlsi.gov.cy/reports (accessed on 27 February 2019).
- Georgiou, G.K.; Kushta, J.; Christoudias, T.; Proestos, Y.; Lelieveld, J. Air quality modelling over the Eastern Mediterranean: Seasonal sensitivity to anthropogenic emissions. Atmos. Environ. 2020, 222, 117119. [Google Scholar] [CrossRef]
- Khalil, M.A.K.; Rasmussen, R.A. The global cycle of carbon monoxide: Trends and mass balance. Chemosphere 1990, 20, 227–242. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, C.S.; Zhang, R.; Chen, L. Spatial and temporal evaluation of long term trend (2005-2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmos. Environ. 2017, 154, 151–166. [Google Scholar] [CrossRef]
- Kleanthous, S.; Vrekoussis, M.; Mihalopoulos, N.; Kalabokas, P.; Lelieveld, J. On the temporal and spatial variation of ozone in Cyprus. Sci. Total Environ. 2014, 476–477, 677–687. [Google Scholar] [CrossRef]
- Pikridas, M.; Vrekoussis, M.; Sciare, J.; Kleanthous, S.; Vasiliadou, E.; Kizas, C.; Savvides, C.; Mihalopoulos, N. Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus. Atmos. Environ. 2018, 191, 79–93. [Google Scholar] [CrossRef]
- Achilleos, S.; Mouzourides, P.; Kalivitis, N.; Katra, I.; Kloog, I.; Kouis, P.; Middleton, N.; Mihalopoulos, N.; Neophytou, M.; Panayiotoua, A.; et al. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci. Total Environ. 2020, 714, 136693. [Google Scholar] [CrossRef]
- Ialongo, I.; Hakkarainen, J.; Hyttinen, N.; Jalkanen, J.-P.; Johansson, L.; Boersma, K.F.; Krotkov, N.; Tamminen, J. Characterization of OMI tropospheric NO2 over the Baltic Sea region. Atmos. Chem. Phys. 2014, 14, 7795–7805. [Google Scholar] [CrossRef] [Green Version]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Bakwin, P.S.; Tans, P.P.; Novelli, P.C. Carbon monoxide budget in the northern hemisphere. Geophys. Res. Lett. 1994, 21, 433–436. [Google Scholar] [CrossRef]
- Drori, R.; Dayan, U.; Edwards, D.P.; Emmons, L.K.; Erlick, C. Attributing and quantifying carbon monoxide sources affecting the Eastern Mediterranean: A combined satellite, modelling, and synoptic analysis study. Atmos. Chem. Phys. 2012, 12, 1067–1082. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Raj, S. Impact of lockdown during COVID-19 pandemic on the air quality of North Indian cities. Urban Clim. 2021, 35, 100754. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Cui, H.; Wang, T.; Zhang, C.; Yun, K. Air pollution and critical air pollutant assessment during and after COVID-19 lockdowns: Evidence from pandemic hotspots in China, the Republic of Korea, Japan, and India. Atmos. Pollut. Res. 2021, 12, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B. Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique. Ecol. Model. 2020, 424, 109017. [Google Scholar] [CrossRef]
- Chan, K.L.; Hartl, A.; Lam, Y.F.; Xie, P.H.; Liu, W.Q.; Cheung, H.M.; Lampel, J.; Pöhler, D.; Li, A.; Xu, J.; et al. Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010. Atmos. Environ. 2015, 119, 45–58. [Google Scholar] [CrossRef]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.; Norris, G.A.; Vedantham, R.; Turner, J.R. Source Region Identification Using Kernel Smoothing. Environ. Sci. Technol. 2009, 43, 4090–4097. [Google Scholar] [CrossRef]
- Cui, S.; Xian, J.; Shen, F.; Zhang, L.; Deng, B.; Zhang, Y.; Ge, X. One-Year Real-Time Measurement of Black Carbon in the Rural Area of Qingdao, Northeastern China: Seasonal Variations, Meteorological Effects, and the COVID-19 Case Analysis. Atmosphere 2021, 12, 394. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.G. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Katsoulis, B.; Antakis, B. Extreme Nitrogen Oxide and Ozone Concentrations in Athens Atmosphere in Relation to Meteorological Conditions. Environ. Monit. Assess. 2007, 128, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Barcelona Supercomputing Center—BSC Dust Daily Forecast. Available online: https://ess.bsc.es/bsc-dust-daily-forecast (accessed on 3 October 2021).
- Țîmpu, S.; Sfîcă, L.; Dobri, R.V.; Cazacu, M.-M.; Nita, A.-I.; Birsan, M.-V. Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere 2020, 11, 342. [Google Scholar] [CrossRef] [Green Version]
Period | Dates | Type of Restriction | |
---|---|---|---|
Study Period | 15/2–08/6 (16 Weeks) | All Periods | |
P1 | 15/2−14/3 (4 weeks) | Before the restriction measures | |
P2 | a | 15/3−23/3 (1 week) | Loose restriction measures |
b | 24/3−03/5 (6 weeks) | Strict restriction measures | |
c | 04/5−20/5 (2 weeks) | Loose restriction measures | |
P3 | 21/5−08/6 (3 weeks) | No restriction measures |
Periods | Strovolos Avenue | Decrease Compared to P1/2020 | Athalassis Avenue | Decrease Compared to P1/2020 | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |||
P1 | 1409 | 1391 | 1314 | 816 | 821 | 783 | ||
P2a | 1491 | 1446 | 829 | −6.9% | 869 | 841 | 465 | −40.6% |
P2b | 1410 | 1348 | 469 | −64.3% | 806 | 786 | 262 | −66.5% |
P2c | 1462 | 1427 | 981 | −35.3% | 844 | 836 | 561 | −28.4% |
P3 | 1452 | 1480 | 1235 | −6.0% | 857 | 875 | 693 | −11.4% |
Pollutant | Periods | 2018 | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
Concentr. | Pos./Neg. Percentage Comparison w.r.t P1/2018 | Concentr. | Pos./Neg. Percentage Comparison w.r.t P1/2019 | Concentr. | Pos./Neg. Percentage Comparison w.r.t P1/2020 | Pos./Neg. | |||
Percent. Compar. w.r.t. Period of 2018 | Percent. Compar. w.r.t. Period of 2019 | ||||||||
CO (ppm) | All periods | 0.29 | 0.23 | ||||||
P1 | - | - | 0.38 | 0.28 | - | −26% | |||
P2a | - | - | 0.28 | −26% | 0.20 | −29% | - | −29% | |
P2b | - | - | 0.29 | −24% | 0.21 | −25% | - | −28% | |
P2c | 0.29 | - | 0.26 | −32% | 0.20 | −29% | −31% | −23% | |
P3 | 0.32 | - | 0.26 | −32% | 0.20 | −29% | −38% | −23% | |
NO2 (ppb) | All periods | 6.29 | 6.67 | 8.98 | |||||
P1 | 8.43 | 8.50 | 7.88 | −10% | −7% | ||||
P2a | 7.71 | −9% | 6.59 | −23% | 4.51 | −43% | −42% | −32% | |
P2b | 6.24 | −26% | 6.94 | −18% | 8.51 | +8% | +36% | +23% | |
P2c | 4.45 | −47% | 5.40 | −37% | 15.82 | +101% | +256% | +193% | |
P3 | 4.19 | −50% | 4.71 | −45% | 7.68 | −2% | +83% | +63% | |
PM10 (μg/m3) | All periods | 45.33 | 22.27 | 28.21 | |||||
P1 | 38.16 | 15.66 | 31.04 | −19% | +98% | ||||
P2a | 49.45 | +30% | 15.69 | 0% | 17.78 | −43% | −64% | +13% | |
P2b | 50.23 | +32% | 18.51 | +18% | 25.83 | −17% | −49% | +40% | |
P2c | 47.09 | +23% | 23.13 | +48% | 36.95 | +19% | −22% | +60% | |
P3 | 41.77 | +10% | 41.39 | +164% | 25.99 | −16% | −38% | −37% |
Period | Dates | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|
P1 | 15/2–14/3 (4 weeks) | 4 | 0 | 0 | |
P2 | a | 15/3–23/3 (1 week) | 4 | 0 | 0 |
b | 24/3–3/5 (6 weeks) | 10 | 0 | 2 | |
c | 4/5–20/5 (2 weeks) | 4 | 0 | 5 | |
P3 | 21/5–8/6 (3 weeks) | 5 | 4 | 1 | |
SUM | 27 | 4 | 8 |
Pollutant | Period | AGM (Background Station) | NicTr (Urban Station) | AURA (Suburban Station) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
CO (ppm) | All periods | 0.14 | 0.14 | 0.14 | 0.35 | 0.35 | 0.29 | -- | 0.29 | 0.23 |
P1 | 0.14 | 0.15 | 0.15 | 0.44 | 0.49 | 0.41 | -- | 0.38 | 0.28 | |
P2a | 0.14 | 0.13 | 0.14 | 0.35 | 0.35 | 0.32 | -- | 0.28 | 0.20 | |
P2b | 0.14 | 0.14 | 0.14 | 0.34 | 0.33 | 0.22 | -- | 0.29 | 0.21 | |
P2c | 0.13 | 0.13 | 0.13 | 0.29 | 0.25 | 0.27 | 0.29 | 0.26 | 0.20 | |
P3 | 0.12 | 0.12 | 0.16 | 0.31 | 0.25 | 0.24 | 0.32 | 0.26 | 0.20 | |
NO2 (ppb) | All periods | 1.07 | 1.32 | 1.25 | 13.45 | 13.66 | 9.93 | 6.29 | 6.67 | 8.98 |
P1 | 1.11 | 1.26 | 1.71 | 14.72 | 17.29 | 16.56 | 8.43 | 8.50 | 7.88 | |
P2a | 1.11 | 1.38 | 1.57 | 15.06 | 15.50 | 10.00 | 7.71 | 6.59 | 4.51 | |
P2b | 1.31 | 1.36 | 1.12 | 13.90 | 12.32 | 5.91 | 6.24 | 6.94 | 8.51 | |
P2c | 0.92 | 1.34 | 1.03 | 11.68 | 11.45 | 9.89 | 4.45 | 5.40 | 15.82 | |
P3 | -- | 1.29 | 0.92 | 11.46 | 12.17 | 8.36 | 4.19 | 4.71 | 7.68 | |
PM10 (μg/m3) | All periods | 36.01 | 19.20 | 21.98 | 44.59 | 37.78 | 26.88 | 45.33 | 22.27 | 28.21 |
P1 | 27.50 | 12.25 | 18.80 | 46.55 | 41.42 | 35.59 | 38.16 | 15.66 | 31.04 | |
P2a | 35.91 | 10.68 | -- | 47.42 | 37.50 | 20.66 | 49.45 | 15.69 | 17.78 | |
P2b | 37.32 | 19.68 | 20.75 | 49.38 | 38.07 | 26.63 | 50.23 | 18.51 | 25.83 | |
P2c | 55.68 | 19.77 | 30.56 | 37.18 | 32.85 | 21.97 | 47.09 | 23.13 | 36.95 | |
P3 | 42.56 | 26.74 | 18.87 | 37.28 | 36.18 | 20.03 | 41.77 | 41.39 | 25.99 |
Year | Period | AΤ (°C) | RH (%) | SR (W/m2) | RF (mm/h) | BP (mbar) | WS (m/s) | WD (deg) | SIGMA THETA (deg) |
---|---|---|---|---|---|---|---|---|---|
2018 | All periods | 18.72 | 239.55 | 0.03 | 998.24 | 2.37 | 214 | 30 | |
P1 | 12.81 | 171.64 | 0.01 | 996.70 | 2.21 | 207 | 29 | ||
P2a | 14.69 | 75.44 | 226.69 | 0 | 1000 | 2.37 | 195 | 31 | |
P2b | 18.09 | 58.02 | 257.33 | 0.02 | 1000 | 2.47 | 219 | 30 | |
P2c | 22.07 | 61.39 | 279.27 | 0.03 | 996.70 | 2.53 | 214 | 29 | |
P3 | 23.64 | 63.91 | 271.84 | 0.06 | 997.20 | 2.22 | 222 | 32 | |
2019 | All periods | 15.97 | 58.30 | 236.35 | 0.03 | 996.01 | 1.96 | 239 | 27 |
P1 | 9.39 | 70.39 | 167.29 | 0.13 | 994.34 | 1.97 | 256 | 26 | |
P2a | 12.46 | 64.64 | 213.64 | 0 | 995.33 | 2.00 | 247 | 28 | |
P2b | 13.48 | 61.62 | 222.46 | 0 | 995.84 | 1.49 | 224 | 28 | |
P2c | 19.75 | 47.06 | 313.21 | 0 | 996.35 | 2.23 | 243 | 29 | |
P3 | 28.46 | 41.54 | 304.89 | 0 | 997.18 | 2.64 | 241 | 27 | |
2020 | All periods | 19.20 | 57.78 | 257.47 | 0.03 | 997.09 | 2.41 | 214 | 31 |
P1 | 14.33 | 68.83 | 162.24 | 0.07 | 999.37 | 2.14 | 193 | 30 | |
P2a | 13.40 | 61.74 | 200.46 | 0.06 | 997.31 | 2.14 | 206 | 31 | |
P2b | 18.45 | 60.90 | 244.43 | 0.02 | 996.04 | 2.38 | 223 | 31 | |
P2c | 26.35 | 42.49 | 299.36 | 0 | 996.63 | 2.40 | 199 | 32 | |
P3 | 24.60 | 46.00 | 322.96 | 0 | 996.14 | 3.04 | 245 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrou, G.; Mouzourides, P.; Eleftheriou, A.; Neophytou, M.K.-A. The Impact on Urban Air Quality of the COVID-19 Lockdown Periods in 2020: The Case of Nicosia, Cyprus. Atmosphere 2021, 12, 1310. https://doi.org/10.3390/atmos12101310
Alexandrou G, Mouzourides P, Eleftheriou A, Neophytou MK-A. The Impact on Urban Air Quality of the COVID-19 Lockdown Periods in 2020: The Case of Nicosia, Cyprus. Atmosphere. 2021; 12(10):1310. https://doi.org/10.3390/atmos12101310
Chicago/Turabian StyleAlexandrou, Giorgos, Petros Mouzourides, Andreas Eleftheriou, and Marina K.-A. Neophytou. 2021. "The Impact on Urban Air Quality of the COVID-19 Lockdown Periods in 2020: The Case of Nicosia, Cyprus" Atmosphere 12, no. 10: 1310. https://doi.org/10.3390/atmos12101310
APA StyleAlexandrou, G., Mouzourides, P., Eleftheriou, A., & Neophytou, M. K. -A. (2021). The Impact on Urban Air Quality of the COVID-19 Lockdown Periods in 2020: The Case of Nicosia, Cyprus. Atmosphere, 12(10), 1310. https://doi.org/10.3390/atmos12101310