An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Local Climate Zones (LCZs)
2.3. UAV-Based Thermal Survey of LCZs
3. Results
3.1. LST Statistics by LCZs
3.2. Spatial Interpretation and Analysis of Field Research Data
3.3. Map of SUHI Intensity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, L. The Climate of London, Deduced from Meteorological Observations, Made in the Metropolis, and at Various Places Around It; Harvey and Darton: London, UK, 1833; Volume 3, p. 714. Available online: https://scholar.google.com/scholar?start=10&q=+author:L.+Howard&hl=bg&as_sdt=0,5 (accessed on 29 May 2021).
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; p. 454. [Google Scholar] [CrossRef] [Green Version]
- Mills, G. Luke Howard and the climate of London. Weather 2008, 63, 153–157. [Google Scholar] [CrossRef]
- Oke, T.R.; Maxwell, G.B. Urban heat island dynamics in Montréal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings; Earthscan, Taylor & Francis: New York, NY, USA, 2011; p. 67. ISBN 978-1-84407-467-9. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Dhainaut, J.-F.; Claessens, Y.-E.; Ginsburg, C.; Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: Consequences on emergency departments. Crit. Care 2004, 8, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Cardelino, C.A.; Chameides, W.L. Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res. 1990, 95, 13971–13979. [Google Scholar] [CrossRef]
- Hajat, S.; O’Connor, M.; Kosatsky, T. Health effects of hot weather: From awareness of risk factors to effective health protection. Lancet 2010, 375, 856–863. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Kaplan, S.; Peeters, A.; Erell, E. Predicting air temperature simultaneously for multiple locations in an urban environment: A bottom up approach. Appl. Geogr. 2016, 76, 62–74. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge, Taylor & Francis Group: Vancouver, BC, Canada, 1987; p. 464. ISBN 9780415043199. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; IOM Rep. 81; WMO/TD-No. 1250: Geneva, Switzerland, 2004; p. 47. Available online: https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf (accessed on 29 May 2021).
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. R. Geogr. Soc. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Gartland, L. Heat Island. Understanding and Mitigating Heat in Urban Areas; Earthscan: London, UK, 2008; p. 214. ISBN 13:978-1-84407-250-7. [Google Scholar]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-useand surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Hui, L. Pavement Materials for Heat Island Mitigation: Design and Management Strategies; Elsevier: Oxford, UK, 2016; p. 370. ISBN 978-0-12-803476-7. [Google Scholar]
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Brears, R.C. Blue and Green Cities. The Role of Blue-Green Infrastructure in Managing Urban Water Resources; Palgrave MacMillan: London, UK, 2018; p. 318. ISBN 978-1-137-59258-3. [Google Scholar]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Antoszewski, P.; Swierk, D.; Krzyzaniak, M. Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Efect of the Urban Heat Island in the Temperate Climate (C) Zone. Int. J. Environ. Res. Public Health 2020, 17, 7093. [Google Scholar] [CrossRef]
- Voogt, J. Urban heat island. In Encyclopedia of Global Environmental Change; Munn, T., Douglas, I., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2002; Volume 3, pp. 660–666. ISBN 0 471 97796 9. [Google Scholar]
- Anderson, V.; Leung, A.C.; Mehdipoor, H.; Jänicke, B.; Milošević, D.; Oliveira, A.; Manavvi, S.; Kabano, P.; Dzyuban, Y.; Aguilar, R.; et al. Technological opportunities for sensing of the health effects of weather and climate change: A state-of-the-art-review. Int. J. Biometeorol. 2021, 65, 779–803. [Google Scholar] [CrossRef]
- Ferguson, G.; Woodbury, A.D. Urban heat island in the subsurface. Geophys. Res. Lett. 2007, 34, L23713. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A.; Korneva, I.A. Underground urban heat island below Moscow city. Urban Clim. 2015, 13, 1–13. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Voogt, J.A.; Grimmond, C.S.B. Modeling Surface Sensible Heat Flux Using Surface Radiative Temperatures in a Simple Urban Area. J. Appl. Meteorol. Climatol. 2000, 39, 1679–1699. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Soux, A.; Voogt, J.A.; Oke, T.R. A model to calculate what a remote sensor “sees” of an urban surface. Bound. Layer Meteorol. 2003, 111, 109–132. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. R. Meteorol. Soc. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Wicki, A.; Parlow, E. Attribution of local climate zones using a multitemporal land use/land cover classification scheme. J. Appl. Remote Sens. 2017, 11, 026001. [Google Scholar] [CrossRef] [Green Version]
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy 2008, 82, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Yokobori, T.; Ohta, S. Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Clim. Res. 2009, 39, 61–73. [Google Scholar] [CrossRef]
- Houett, T.; Pigeon, G. Mapping of urban climate zones and quantifying climate behaviors—An application on Toulouse urban area (France). Environ. Pollut. 2011, 159, 2180–2192. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Ren, C. (Eds.) The Urban Climatic Map: A Methodology for Sustainable Urban Planning; Routledge: London, UK, 2020; p. 528. ISBN 9780367670016. [Google Scholar]
- Auer, A.H. Correlation of Land Use and Cover with Meteorological Anomalies. J. Appl. Meteor. 1978, 17, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Ellefsen, R. Mapping and measuring buildings in the urban canopy boundary layer in ten US cities. Energy Build. 1991, 16, 1025–1049. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic properties of urban areas derived from analysis of urban form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Thermal differentiation of “local climate zones” using temperature observations from urban and rural field sites. In Proceedings of the Preprints, 9th Symposium, on Urban Environment, Keystone, CO, USA, 2 August 2010; Available online: https://ams.confex.com/ams/19Ag19BLT9Urban/webprogram/Paper173127.html (accessed on 13 June 2021).
- Stewart, I.D. Redefining the Urban Heat Island. Ph.D. Dissertation, Department of Geography, University of British Columbia, Vancouver, BC, Canada, 2011; p. 352. Available online: https://circle.ubc.ca/handle/2429/38069 (accessed on 13 June 2021).
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteor. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Wang, R.; Ren, C.; Hu, Y.; Ka-Lun Laub, K.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Gál1, T.; Bechtel, B.; Unger, J. Comparison of two different Local Climate Zone mapping methods. In Proceedings of the ICUC9—9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, Toulouse, France, 15 June 2015; pp. 1–6. Available online: http://www.meteo.fr/icuc9/LongAbstracts/gd2-6-1551002_a.pdf (accessed on 29 May 2021).
- Cardoso, R.S.; Amorim, M.C.C.T. Urban heat island analysis using the ‘local climate zone’ scheme in Presidente Prudente, Brazil. Investig. Geogr. 2018, 69, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using local climate zones—Comparison of 50 cities. Urban Clim. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, K.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Krč, P.; Resler, J.; Krayenhoff, E.S. High-resolution modelling of thermal exposure during a hot spell: A case study using PALM-4U in Prague, Czech Republic. Atmosphere 2021, 12, 175. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geoinf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones classification method from Copernicus land monitoring service datasets: An ArcGIS-based toolbox. MethodsX 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Clim. 2020, 33, 1–25. [Google Scholar] [CrossRef]
- Burghardt, R. Development of an ArcGIS Extension to Model Urban Climate Factors: A Method of Automatic and Interactive Analysis to Capture the Influencing Factors on Urban Climate. Dissertation zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.), Universität Kassel, Kassel, Germany,, 2014; p. 101. Available online: https://kobra.uni-kassel.de/handle/123456789/2015032047832 (accessed on 29 May 2021).
- Szymanowski, M.; Kryza, M. GIS-based techniques for urban heat island spatialization. Clim. Res. 2009, 38, 171–187. [Google Scholar] [CrossRef]
- Coseo, P.J.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, Q.; Yang, C.; Liu, H. The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones. Int. J. Environ. Res. Public Health 2020, 17, 9578. [Google Scholar] [CrossRef]
- Nedkov, S.; Zhiyanski, M.; Dimitrov, S.; Borisova, B.; Popov, A.; Ihtimanski, I.; Yaneva, R.; Nikolov, P.; Bratanova-Doncheva, S. Mapping and assessment of urban ecosystem condition and services using integrated index of spatial structure. One Ecosyst. 2017, 2, e14499. [Google Scholar] [CrossRef]
- Kopp, J.; Frajer, J.; Novotná, M.; Preis, J.; Dolejš, M. Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. ISPRS Int. J. Geo-Inf. 2021, 10, 350. [Google Scholar] [CrossRef]
- Hung, T.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar]
- Eliasson, I. Infrared thermography and urban temperature patterns. Int. J. Remote Sens. 1992, 13, 869–879. [Google Scholar] [CrossRef]
- Saaroni, H.; Ben-Dor, E.; Bittan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. [Google Scholar] [CrossRef]
- Skarbit, N.; Gál, T.; Unger, J. Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. In Proceedings of the Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A.; Irger, M. Mapping Local Climate Zones for urban morphology classification based on airborne remote sensing data. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Xiang, T.; Xia, G.; Zhang, L. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, applications, and prospects. IEEE Geosci. Remote Sens. Mag. 2019, 7, 29–63. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Complete urban surface temperatures. J. Appl. Meteorol. Climatol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Gaitani, N.; Burud, I.; Thiis, T.; Santamouris, M. Aerial survey and in-situ measurements of materials and vegetation in the urban fabric. In Proceedings of the International High-Performance Built Environment Conference–A Sustainable Built Environment Conference 2016 Series (SBE16), iHBE 2016, Sydney, Australia, 17–18 November 2016; Volume 180, pp. 1335–1344. [Google Scholar] [CrossRef]
- Gaitani, N.; Burud, I.; Thiis, T.; Santamouris, M. High-resolution spectral mapping of urban thermal properties with Unmanned Aerial Vehicles. Build. Environ. 2017, 121, 215–224. [Google Scholar] [CrossRef]
- Burud, I.; Vukovic, M.; Thiis, T.; Gaitani, N. Urban surfaces studied by VIS/NIR imaging from UAV: Possibilities and limitations. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 6 August 2018; Themistocleous, K., Hadjimitsis, D.G., Michaelides, S., Ambrosia, V., Papadavid, G., Eds.; p. 1077316. [Google Scholar] [CrossRef] [Green Version]
- Naughton, J.; McDonald, W. Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Ravich, T. A Comparative Global Analysis of Drone Laws: Best Practices and Policies. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Custers, B., Ed.; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 301–322. ISBN 978-94-6265-132-6. [Google Scholar]
- Dimitrov, S.; Popov, A.; Iliev, M. Mapping and assessment of urban heat island effects in the city of Sofia, Bulgaria through integrated application of remote sensing, unmanned aerial systems (UAS) and GIS. In Proceedings of the SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), Paphos, Cyprus, 26 August 2020; p. 115241A. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901−2100 depicted by world maps of the Köppen−Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land surface temperature differences within local climate zones, based on two central European cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C.V. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Sharifi, A.; Yang, P.; Borjigin, H.; Murakami, D.; Yamagata, Y. Mapping building carbon emissions within local climate zones in Shanghai. Energy Procedia 2018, 152, 815–822. [Google Scholar] [CrossRef]
- Li, T.; Xu, Y.; Yao, L. Detecting urban landscape factors controlling seasonal land surface temperature: From the perspective of urban function zones. Environ. Sci. Pollut. Res. 2021, 28, 1–16. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley Series in Probability and Statistics: New York, NY, USA, 1977; p. 448. ISBN 978-0-471-16240-7. [Google Scholar]
- Lehtonen, R.; Pahkinen, E. Practical Methods for Design and Analysis of Complex Surveys, 2nd ed.; Wiley Survey Research Methods & Sampling: Chichester, UK, 2004; p. 360. ISBN 978-0-470-84769-5. [Google Scholar]
- Gallego, F.J. The efficiency of sampling very high resolution images for area estimation in the European Union. Int. J. Remote Sens. 2011, 33, 1868–1880. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Stehman, S.V. Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change. Remote Sens. Lett. 2012, 3, 111–120. [Google Scholar] [CrossRef]
- Peck, R.; Olsen, C.; Devore, J.L. Introduction to Statistics and Data Analysis, 4th ed.; Brooks/Cole: Boston, MA, USA, 2012; p. 912. [Google Scholar]
LCZ Class | Number of Cells | Surface (ha) | % of Study Area | Sample Cells Per Stratum (n) |
---|---|---|---|---|
LCZ_3 | 26 | 162.5 | 0.8 | 1 |
LCZ_4 | 346 | 2162.5 | 10.5 | 7 |
LCZ_5 | 636 | 3975.0 | 19.3 | 15 |
LCZ_6 | 723 | 4518.8 | 21.9 | 12 |
LCZ_8 | 547 | 3418.8 | 16.6 | 14 |
LCZ_9 | 34 | 212.5 | 1.0 | 2 |
LCZ_10 | 34 | 212.5 | 1.0 | 2 |
LCZ_A | 216 | 1350.0 | 6.5 | 4 |
LCZ_B | 117 | 731.3 | 3.5 | 2 |
LCZ_C | 194 | 1212.5 | 5.9 | 2 |
LCZ_D | 298 | 1862.5 | 9.0 | 10 |
LCZ_E | 105 | 656.3 | 3.2 | 2 |
LCZ_G | 23 | 143.8 | 0.7 | 1 |
Total | 3299 | 20,618.8 | 100 | 74 |
LCZ Class | Min | Max | Mean | Median | Stand. dev | 25 Prcntil | 75 Prcntil | Skewness | Kurtosis | Coeff. var | Std. Error |
---|---|---|---|---|---|---|---|---|---|---|---|
LCZ 3 | 20.6 | ||||||||||
LCZ 4 | 18.8 | 30.6 | 23.9 | 23.8 | 4.3 | 19.1 | 26.6 | 0.3 | −0.6 | 17.8 | 1.6 |
LCZ 5 | 19.0 | 27.9 | 22.5 | 22.5 | 2.4 | 20.7 | 23.7 | 0.7 | 0.4 | 10.5 | 0.6 |
LCZ 6 | 17.1 | 23.3 | 20.1 | 20.2 | 2.2 | 17.8 | 21.9 | 0.1 | −1.4 | 10.8 | 0.6 |
LCZ 8 | 17.1 | 24.8 | 21.3 | 22.0 | 2.6 | 18.4 | 23.9 | −0.3 | −1.5 | 12.4 | 0.7 |
LCZ 9 | 23.7 | 26.4 | 25.1 | 25.1 | 1.9 | 17.8 | 19.8 | 0.0 | −2.8 | 7.6 | 1.3 |
LCZ 10 | 21.0 | 23.5 | 22.3 | 22.3 | 1.8 | 15.7 | 17.7 | 0.0 | −2.8 | 8.2 | 1.3 |
LCZ A | 17.0 | 20.2 | 19.0 | 19.4 | 1.5 | 17.5 | 20.2 | −1.0 | −0.7 | 7.9 | 0.8 |
LCZ B | 21.2 | 21.3 | 21.3 | 21.3 | 0.1 | 15.9 | 16.0 | 0.0 | −2.8 | 0.4 | 0.1 |
LCZ C | 16.8 | 17.6 | 17.2 | 17.2 | 0.6 | 12.6 | 13.2 | 0.0 | −2.8 | 3.6 | 3.6 |
LCZ D | 14.4 | 22.6 | 17.8 | 18.1 | 2.7 | 15.0 | 19.7 | 0.3 | −0.7 | 14.9 | 0.8 |
LCZ E | 19.6 | 21.9 | 20.7 | 20.7 | 1.7 | 14.7 | 16.4 | 0.0 | −2.8 | 8.1 | 1.2 |
LCZ G | 17.8 | ||||||||||
All cells | 14.4 | 30.6 | 20.9 | 20.7 | 3.1 | 18.6 | 23.1 | 0.4 | 0.4 | 14.9 | 0.4 |
Heat Load Categories | z-Scores | Area (%) | Population (%) |
---|---|---|---|
1 (most favourable) | <−1.00 | 16.22 | 20.3 |
2 (favourable) | from −0.99 to 0.00 | 35.14 | 38.1 |
3 (less favourable) | from 0.01 to 0.99 | 36.49 | 30.2 |
4 (most unfavourable) | >1.00 | 12.16 | 11.4 |
LCZ | 3 | 4 | 5 | 6 | 8 | 9 | 10 | A | B | C | D | E | G | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average LSTs (°C) | 20.6 | 23.9 | 22.5 | 20.1 | 21.3 | 25.1 | 22.3 | 19.0 | 21.3 | 17.2 | 17.8 | 20.7 | 17.8 | |
3 | 20.6 | −3.28 | −1.94 | 0.53 | −0.71 | −4.46 | −1.66 | 1.56 | −0.67 | 3.39 | 2.77 | −0.15 | 2.77 | |
4 | 23.9 | 3.28 | 1.34 | 3.81 | 2.56 | −1.16 | 1.62 | 4.83 | 2.61 | 6.67 | 6.05 | 3.13 | 6.05 | |
5 | 22.5 | 1.94 | −1.34 | 2.47 | 1.22 | −2.56 | 0.28 | 3.49 | 1.27 | 5.33 | 4.71 | 1.79 | 4.71 | |
6 | 20.1 | −0.53 | −3.81 | −2.47 | −1.24 | −4.96 | −2.19 | 1.03 | −1.2 | 2.86 | 2.24 | −0.68 | 2.24 | |
8 | 21.3 | 0.71 | −2.56 | −1.22 | 1.24 | −3.76 | −0.95 | 2.27 | 0.04 | 4.1 | 3.48 | 0.56 | 3.48 | |
9 | 25.1 | 4.46 | 1.16 | 2.56 | 4.96 | 3.76 | 2.76 | 6.06 | 3.76 | 7.86 | 7.26 | 4.36 | 7.26 | |
10 | 22.3 | 1.66 | −1.62 | −0.28 | 2.19 | 0.95 | −2.76 | 3.22 | 0.99 | 5.05 | 4.43 | 1.51 | 4.43 | |
A | 19.0 | −1.56 | −4.83 | −3.49 | −1.03 | −2.27 | −6.06 | −3.22 | −2.23 | 1.83 | 1.21 | −1.71 | 1.21 | |
B | 21.3 | 0.67 | −2.61 | −1.27 | 1.2 | −0.04 | −3.76 | −0.99 | 2.23 | 4.06 | 3.44 | 0.52 | 3.44 | |
C | 17.2 | −3.39 | −6.67 | −5.33 | −2.86 | −4.1 | −7.86 | −5.05 | −1.83 | −4.06 | −0.62 | −3.54 | −0.62 | |
D | 17.8 | −2.77 | −6.05 | −4.71 | −2.24 | −3.48 | −7.26 | −4.43 | −1.21 | −3.44 | 0.62 | −2.92 | 0 | |
E | 20.7 | 0.15 | −3.13 | −1.79 | 0.68 | −0.56 | −4.36 | −1.51 | 1.71 | −0.52 | 3.54 | 2.92 | 2.92 | |
G | 17.8 | −2.77 | −6.05 | −4.71 | −2.24 | −3.48 | −7.26 | −4.43 | −1.21 | −3.44 | 0.62 | 0 | −2.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, S.; Popov, A.; Iliev, M. An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere 2021, 12, 1370. https://doi.org/10.3390/atmos12111370
Dimitrov S, Popov A, Iliev M. An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere. 2021; 12(11):1370. https://doi.org/10.3390/atmos12111370
Chicago/Turabian StyleDimitrov, Stelian, Anton Popov, and Martin Iliev. 2021. "An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria" Atmosphere 12, no. 11: 1370. https://doi.org/10.3390/atmos12111370
APA StyleDimitrov, S., Popov, A., & Iliev, M. (2021). An Application of the LCZ Approach in Surface Urban Heat Island Mapping in Sofia, Bulgaria. Atmosphere, 12(11), 1370. https://doi.org/10.3390/atmos12111370