Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region
Abstract
:1. Introduction
2. Materials and Methods
Method of Generating the Two-Dimensional dTEC Maps
- The direction of propagation was determined by the tilt of the MSTID in the latitudinal and longitudinal components.
- The propagation direction must be perpendicular to the front of the TID, and the variation azimuth starts from the geographic North () and continues clockwise.
- The wave phases selected in a particular component should be moving in the same direction.
- The amplitude of the dTEC oscillation should be more than 0.2 TECU [6].
- It is requested that the areas to be analyzed are equal and exist in the same time domain in both longitudinal and latitudinal components of the keogram.
- The time interval for the oscillation(s) should be at least 30 min.
- The oscillation should have at least two wavefront and propagates on the maps, assuming that the propagation direction is perpendicular to the wavefront of the MSTID.
- The Wavefront should be greater than 3 in latitude and longitude on the keograms.
3. Results
3.1. Occurrence of MSTIDs during Solar Cycle 24
3.2. Horizontal Wavelength of the MSTIDs
3.3. Period of MSTIDs
3.4. Horizontal Phase Velocity of the MSTIDs
3.5. Propagation Direction of the MSTIDs
3.6. Local Time Dependence of the Equatorial MSTID
4. Discussion
4.1. Characteristics of the Equatorial MSTIDs
4.2. Seasonal Variation of Equatorial MSTIDs
4.3. Long Term Variability of Equatorial MSTIDs
5. Conclusions
- A total of 712 MSTIDs were observed during geomagnetic quiet conditions and the statistical analysis was done during the solar cycle 24 (from January 2014 to December 2019). The number of MSTIDs observed increases with the solar activity; that is, most of the them were observed during the solar maximum phase and decrease in the minimum phase. This might have been caused by gravity wave dissipation due to high viscosity in the thermosphere as a result of low and high thermospheric temperature during solar minimum and maximum, respectively.
- The predominant daytime MSTIDs representing 80% of the total observation occurred in winter with the secondary peak in the equinox, while the evening time MSTID, which is 18% of the entire events, occurred in summer and equinox, and the remaining 2% of the MSTIDs were observed during nighttime. The seasonal variation of the MSTID events was attributed to the source mechanisms generating them, the wind filtering and dissipation effect, and the local time dependency.
- The horizontal wavelengths of the MSTIDs were mostly concentrated between 500 and 800 km, with a mean value of 667 ± 131 km. The observed periods ranged from 30 to 45 min, with a mean value of 36 ± 7 min. The observed horizontal phase speeds were distributed around 200 to 400 m/s, with coarresponding mean of 301 ± 75 m/s.
- The MSTIDs in the winter solstice and equinoctial months preferentially propagated northeastward and northwestward. Meanwhile, during the summer solstice they propagated in all directions. The anisotropy of the propagation direction might be due to several reasons: the wind and dissipative filtering effects, ion drag effects, primary source region, and the presence of the secondary or tertiary gravity waves in the thermosphere. The atmospheric gravity waves from strong convective sources originated from the equatorial and Amazon region might be the primary precursor of the northeastward and northwestward propagating MSTIDs during the summer solstice and autumn equinox. Nevertheless, the strong cold front emanating from the low latitude might have been the primary source for the northeastward and northwestward MSTIDs during the winter solstice and spring equinox. In all seasons, we noted that the MSTIDs propagating southeastward were probably excited by the likely gravity waves generated by the ITCZ.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunsucker, R.; Delana, B.; Hargreaves, J. ATS-6 RBE measurements of ionospheric storm-time behaviour of TEC and other parameters at College, Alaska. In International Symposium on Beacon Satellite Studies of the Earth’s Environment; National Physical Laboratory of India: New Delhi, India, 1984; pp. 467–477. [Google Scholar]
- Francis, S.H. A theory of medium-scale traveling ionospheric disturbances. J. Geophys. Res. 1974, 79, 5245–5260. [Google Scholar] [CrossRef]
- Crowley, G.; Azeem, I. Extreme Ionospheric Storms and Their Effects on GPS Systems. In Extreme Events in Geospace; Elsevier: Amsterdam, The Netherlands, 2018; pp. 555–586. [Google Scholar]
- Squat, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, 14, 917. [Google Scholar]
- Tsugawa, T.; Otsuka, Y.; Coster, A.J.; Saito, A. Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Otsuka, Y.; Suzuki, K.; Nakagawa, S.; Nishioka, M.; Shiokawa, K.; Tsugawa, T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, 31, 163–172. [Google Scholar] [CrossRef]
- Otsuka, Y.; Kotake, N.; Shiokawa, K.; Ogawa, T.; Tsugawa, T.; Saito, A. Statistical study of medium-scale traveling ionospheric disturbances observed with a GPS receiver network in Japan. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Abdu, M.A., Pancheva, D., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 291–299. [Google Scholar]
- Kotake, N.; Otsuka, Y.; Tsugawa, T.; Ogawa, T.; Saito, A. Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Miller, C.A. Electrodynamics of midlatitude spread F 2. A new theory of gravity wave electric fields. J. Geophys. Res. Space Phys. 1997, 102, 11533–11538. [Google Scholar] [CrossRef]
- Kotake, N.; Otsuka, Y.; Ogawa, T.; Tsugawa, T.; Saito, A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space 2007, 59, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan. Earth Planets Space 2021, 73, 1–11. [Google Scholar] [CrossRef]
- Perkins, F. Spread F and ionospheric currents. J. Geophys. Res. 1973, 78, 218–226. [Google Scholar] [CrossRef]
- Otsuka, Y.; Onoma, F.; Shiokawa, K.; Ogawa, T.; Yamamoto, M.; Fukao, S. Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E region field-aligned irregularities at midlatitude. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; De Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Takahashi, H.; Wrasse, C.M.; Figueiredo, C.A.O.B.; Barros, D.; Abdu, M.A.; Otsuka, Y.; Shiokawa, K. Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Prog. Earth Planet. Sci. 2018, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Wrasse, C.; Figueiredo, C.; Barros, D.; Paulino, I.; Essien, P.; Abdu, M.; Otsuka, Y.; Shiokawa, K. Equatorial plasma bubble occurrence under propagation of MSTID and MLT gravity waves. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027566. [Google Scholar] [CrossRef]
- Retterer, J.; Roddy, P. Faith in a seed: On the origins of equatorial plasma bubbles. Ann. Geophys. 2014, 32, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, A.A.; Kelley, M.C.; Sahai, Y.; Bittencourt, J.A.; Fagundes, P.R. Thermospheric dark band structures observed in all-sky OI 630 nm emission images over the Brazilian low-latitude sector. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Candido, C.M.N.; Pimenta, A.A.; Bittencourt, J.A.; Becker-Guedes, F. Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Makela, J.J.; Miller, E.S.; Talaat, E.R. Nighttime medium-scale traveling ionospheric disturbances at low geomagnetic latitudes. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Amorim, D.C.M.; Pimenta, A.A.; Bittencourt, J.A.; Fagundes, P.R. Long-term study of medium-scale traveling ionospheric disturbances using OI 630 nm all-sky imaging and ionosonde over Brazilian low latitudes. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Paulino, I.; Medeiros, A.F.; Vadas, S.L.; Wrasse, C.M.; Takahashi, H.; Buriti, R.A.; Leite, D.; Filgueira, S.; Bageston, J.V.; Sobral, J.H.A.; et al. Periodic waves in the lower thermosphere observed by OI630 nm airglow images. Ann. Geophys. 2016, 34, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Machado, C.S. Estudo de Distúrbios Ionosféricos Propagantes de Média Escala no Hemisfério sul Utilizando Técnicas óticas, de Rádio e Simulações Numéricas. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 2017. [Google Scholar]
- Figueiredo, C.; Takahashi, H.; Wrasse, C.M.; Otsuka, Y.; Shiokawa, K.; Barros, D. Investigation of Nighttime MSTIDS Observed by Optical Thermosphere Imagers at Low Latitudes: Morphology, Propagation Direction, and Wind Filtering. J. Geophys. Res. Space Phys. 2018, 139, 7843–7857. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y. A statistical study of large-scale traveling ionospheric disturbances using theGPS network in Japan. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Shiokawa, K.; Otsuka, Y.; Ogawa, T. Quasiperiodic southward moving waves in 630-nm airglow images in the equatorial thermosphere. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Ogawa, T. Observation of equatorial nighttime medium-scale traveling ionospheric disturbances in 630-nm airglow images over 7 years. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Fukao, S.; Miyazaki, S. High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys. Res. Lett. 1998, 25, 3079–3082. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Xu, G.; Yu, T.; Yang, G.; Wang, J.S. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- MacDougall, J.; Abdu, M.A.; Batista, I.; Buriti, R.; Medeiros, A.F.; Jayachandran, P.T.; Borba, G. Spaced transmitter measurements of medium scale traveling ionospheric disturbances near the equator. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Jonah, O.F.; Kherani, E.A.; De Paula, E.R. Investigations of conjugate MSTIDS over the Brazilian sector during daytime. J. Geophys. Res. Space Phys. 2017, 122, 9576–9587. [Google Scholar] [CrossRef]
- Figueiredo, C.; Takahashi, H.; Wrasse, C.; Otsuka, Y.; Shiokawa, K.; Barros, D. Medium-scale traveling ionospheric disturbances observed by detrended total electron content maps over Brazil. J. Geophys. Res. Space Phys. 2018, 123, 2215–2227. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Boucher, C.; Altamimi, Z. ITRS, PZ-90 and WGS 84: Current realizations and the related transformation parameters. J. Geod. 2001, 75, 613–619. [Google Scholar] [CrossRef]
- Cai, C.; Gao, Y. A combined GPS/GLONASS navigation algorithm for use with limited satellite visibility. J. Navig. 2009, 62, 671–685. [Google Scholar] [CrossRef]
- Goral, W.; Skorupa, B. Determination of intermediate orbit and position of GLONASS satellites based on the generalized problem of two fixed centers. Acta Geodyn. Geromater. 2012, 9, 283–291. [Google Scholar]
- Otsuka, Y.; Ogawa, T.; Saito, A.; Tsugawa, T.; Fukao, S.; Miyazaki, S. A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 2002, 54, 63–70. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; Valladares, C.E.; Yeh, H.C.; Su, S.Y.; MacKenzie, E.; Sultan, P.J.; Aarons, J.; Rich, F.J.; Doherty, P.; et al. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J. Geophys. Res. Space Phys. 2001, 106, 30389–30413. [Google Scholar] [CrossRef] [Green Version]
- Prol, F.d.S.; Camargo, P.d.O.; Muella, M.T.d.A.H. Comparative study of methods for calculating ionospheric points and describing the gnss signal path. Bol. Ciências Geodésicas 2017, 23, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Sobral, J.H.A.; Takahashi, H.; Abdu, M.A.; Taylor, M.J.; Sawant, H.; Santana, D.C.; Gobbi, D.; de Medeiros, A.F.; Zamlutti, C.J.; Schuch, N.J.; et al. Thermospheric F-region travelling disturbances detected at low latitude by an OI 630 nm digital imager system. Adv. Space Res. 2001, 27, 1201–1206. [Google Scholar] [CrossRef]
- Saito, S.; Yamamoto, M.; Hashiguchi, H.; Maegawa, A.; Saito, A. Observational evidence of coupling between quasi-periodic echoes and medium-scale traveling ionospheric disturbances. Ann. Geophys. 2007, 25, 2185–2194. [Google Scholar] [CrossRef]
- Taylor, M.J.; Pautet, P.D.; Medeiros, A.; Buriti, R.; Fechine, J.; Fritts, D.; Vadas, S.; Takahashi, H.; Sao Sabbas, F. Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Ann. Geophys. 2009, 27, 461. [Google Scholar] [CrossRef] [Green Version]
- Paulino, I.; Takahashi, H.; Gobbi, D.; Medeiros, A.; Buriti, R.; Wrasse, C. Observações de ondas de gravidade de média escala na região equatorial do Brasil. In Proceedings of the 12th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 15–18 August 2011; pp. 2123–2126. [Google Scholar]
- Narayanan, V.L.; Shiokawa, K.; Otsuka, Y.; Saito, S. Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res. Space Phys. 2014, 119, 9268–9282. [Google Scholar] [CrossRef]
- Essien, P.; Paulino, I.; Wrasse, C.M.; Campos, J.A.V.; Paulino, A.R.; Medeiros, A.F.; Buriti, R.A.; Takahashi, H.; Agyei-Yeboah, E.; Lins, A.N. Seasonal characteristics of small-and medium-scale gravity waves in the mesosphere and lower thermosphere over the Brazilian equatorial region. Ann. Geophys. 2018, 36, 899–914. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhou, C.; Liu, Y.; Zhao, J.; Tang, Q.; Wang, X.; Zhao, Z. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planets Space 2019, 71, 1–14. [Google Scholar] [CrossRef]
- Röttger, J. Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection. J. Atmos. Terr. Phys. 1977, 39, 987–998. [Google Scholar] [CrossRef]
- Vadas, S.L.; Crowley, G. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Vadas, S.L.; Fritts, D.C. Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Vadas, S.L.; Becker, E. Numerical modeling of the generation of tertiary gravity waves in the mesosphere and thermosphere during strong mountain wave events over the Southern Andes. J. Geophys. Res. Space Phys. 2019, 124, 7687–7718. [Google Scholar] [CrossRef]
- Munro, G. Short-period changes in the F region of the ionosphere. Nature 1948, 162, 886–887. [Google Scholar] [CrossRef]
- Munro, G. Travelling disturbances in the ionosphere. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1950, 202, 208–223. [Google Scholar]
- Munro, G. Travelling Ionospheric Disturbances in the F region. Aust. J. Phys. 1958, 11, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Vadas, S.L.; Taylor, M.J.; Pautet, P.D.; Stamus, P.; Fritts, D.C.; Liu, H.L.; São Sabbos, F.; Batista, V.; Takahashi, H.; Rampinelli, V. Convection: The likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann. Geophys. 2009, 27, 231. [Google Scholar] [CrossRef] [Green Version]
- Gossard, E.E.; Hooke, W.H. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves-Their Generation and Propagation; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1975; Volume 2. [Google Scholar]
- Fisher, D.J.; Makela, J.J.; Meriwether, J.W.; Buriti, R.A.; Benkhaldoun, Z.; Kaab, M.; Lagheryeb, A. Climatologies of nighttime thermospheric winds and temperatures from Fabry-Perot interferometer measurements: From solar minimum to solar maximum. J. Geophys. Res. Space Phys. 2015, 120, 6679–6693. [Google Scholar] [CrossRef] [Green Version]
- Pitteway, M.L.V.; Hines, C.O. The viscous damping of atmospheric gravity waves. Can. J. Phys. 1963, 41, 1935–1948. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Fujiwara, H.; Jin, H.; Shinagawa, H. A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res. Space Phys. 2014, 119, 5807–5820. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Aragon-Angel, A. Propagation of medium-scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Sci. 2012, 47. [Google Scholar] [CrossRef] [Green Version]
- Bowman, G.G. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr. 1990, 42, 109–138. [Google Scholar] [CrossRef] [Green Version]
- Garcia, F.; Kelley, M.; Makela, J.; Huang, C.S. Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. J. Geophys. Res. Space Phys. 2000, 105, 18407–18415. [Google Scholar] [CrossRef]
- Shiokawa, K.; Ihara, C.; Otsuka, Y.; Ogawa, T. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Cole, K.D.; Hickey, M.P. Energy transfer by gravity wave dissipation. Adv. Space Res. 1981, 1, 65–75. [Google Scholar] [CrossRef]
- Vincent, R.A. The dynamics of the mesosphere and lower thermosphere: A brief review. Prog. Earth Planet. Sci. 2015, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rishbeth, H. Thermospheric winds and the F-region: A review. J. Atmos. Terr. Phys. 1972, 34, 1–47. [Google Scholar] [CrossRef]
- Makela, J.J.; Fisher, D.J.; Meriwether, J.W.; Buriti, R.A.; Medeiros, A.F. Near-continual ground-based nighttime observations of thermospheric neutral winds and temperatures over equatorial Brazil from 2009 to 2012. J. Atmos. Sol.-Terr. Phys. 2013, 103, 94–102. [Google Scholar] [CrossRef]
- Richmond, A. Gravity wave generation, propagation, and dissipation in the thermosphere. J. Geophys. Res. Space Phys. 1978, 83, 4131–4145. [Google Scholar] [CrossRef]
Year | Solar Cycle Phase | MSTID events |
---|---|---|
2014 | Maximum | 162 |
2015 | Maximum | 146 |
2016 | Descending | 139 |
2017 | Descending | 96 |
2018 | Minimum | 86 |
2019 | Minimum | 83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essien, P.; Figueiredo, C.A.O.B.; Takahashi, H.; Wrasse, C.M.; Barros, D.; Klutse, N.A.B.; Lomotey, S.O.; Ayorinde, T.T.; Gobbi, D.; Bilibio, A.V. Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region. Atmosphere 2021, 12, 1409. https://doi.org/10.3390/atmos12111409
Essien P, Figueiredo CAOB, Takahashi H, Wrasse CM, Barros D, Klutse NAB, Lomotey SO, Ayorinde TT, Gobbi D, Bilibio AV. Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region. Atmosphere. 2021; 12(11):1409. https://doi.org/10.3390/atmos12111409
Chicago/Turabian StyleEssien, Patrick, Cosme Alexandre Oliveira Barros Figueiredo, Hisao Takahashi, Cristiano Max Wrasse, Diego Barros, Nana Ama Browne Klutse, Solomon Otoo Lomotey, Toyese Tunde Ayorinde, Delano Gobbi, and Anderson V. Bilibio. 2021. "Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region" Atmosphere 12, no. 11: 1409. https://doi.org/10.3390/atmos12111409
APA StyleEssien, P., Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Barros, D., Klutse, N. A. B., Lomotey, S. O., Ayorinde, T. T., Gobbi, D., & Bilibio, A. V. (2021). Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region. Atmosphere, 12(11), 1409. https://doi.org/10.3390/atmos12111409