Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and VOC Analysis
2.2. Health Risk Assessment
2.3. Statistical Analyses
3. Results and Discussion
3.1. Indoor Concentrations of VOCs
3.2. Comparison with the Literature
3.3. Correlation Analysis and Group Distribution
3.4. Variations in VOC Compositions among Classroom Types
3.5. Indoor-to-Outdoor Ratios of the VOCs
3.6. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
123TMB | 1,2,3-trimethylbenzene |
124TMB | 1,2,4-trimethylbenzene |
135TMB | 1,3,5-trimethylbenzene |
BuB | butyl benzene |
DEtB | diethylbenzenes |
EtB | ethylbenzene |
EtT | ethyltoluenes |
NAP | naphthalene |
MPXY | m/p-xylenes |
OXY | o-xylene |
UnD | undecane |
DoD | dodecane |
TriD | tridecane |
TetraD | tetradecane |
HexaD | hexadecane |
BZALD | benzaldehyde |
HMS | homomenthyl salicylate |
EtHexS | 2-ethylhexyl salicylate |
BuAc | butyl acetate |
PERC | tetrachloroethylene |
DCB | 1,4-dichlorobenzene |
References
- Ministry of Education and Training (MOET). Vietnam Education and Training 2019. Available online: https://moet.gov.vn/content/tintuc/Lists/News (accessed on 20 August 2021).
- Tran, T.D.; Nguyen, T.X.; Nguyen, H.T.T.; Vo, H.T.L.; Nghiem, D.T.; Le, T.H.; Dao, D.S.; Van Nguyen, N. Seasonal Variation, Sources, and Health Risk Assessment of Indoor/Outdoor BTEX at Nursery Schools in Hanoi, Vietnam. Water Air Soil Pollut. 2020, 231, 1–18. [Google Scholar] [CrossRef]
- Kim, J.-L.; Elfman, L.; Mi, Y.; Wieslander, G.; Smedje, G.; Norbäck, D. Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools: Associations with asthma and respiratory symptoms in pupils. Indoor Air 2007, 17, 153–163. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Hulin, M.; Lavaud, F.; Raherison, C.; Kopferschmitt, C.; de Blay, F.; Charpin, D.A.; Denis, C. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 2012, 67, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofuoglu, S.C.; Aslan, G.; Inal, F.; Sofuoglu, A. An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int. J. Hyg. Environ. Health 2011, 214, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-C.; Lin, C.; Lin, Y.-K.; Wang, Y.-F.; Weng, W.-H.; Kuo, Y.-M. Characteristics and determinants of ambient volatile organic compounds in primary schools. Environ. Sci. Process. Impacts 2016, 18, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Volatile Organic Compounds’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 22 July 2021).
- Hansen, J.S.; Nørgaard, A.W.; Koponen, I.K.; Sørli, J.B.; Paidi, M.D.; Hansen, S.W.K.; Clausen, P.A.; Nielsen, G.D.; Wolkoff, P.; Larsen, S.T. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J. Immunotoxicol. 2016, 13, 793–803. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- McGwin Jr, G.; Lienert, J.; Kennedy Jr, J.I. Formaldehyde exposure and asthma in children: A systematic review. Environ. Health Persp. 2010, 118, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiee, A.; Delgado-Saborit, J.M.; Sly, P.D.; Amiri, H.; Hoseini, M. Exploring urinary biomarkers to assess oxidative DNA damage resulting from BTEX exposure in street children. Environ. Res. 2022, 203, 111725. [Google Scholar] [CrossRef]
- Brumberg, H.L.; Karr, C.J. Ambient Air Pollution: Health Hazards to Children. Pediatrics 2021, 147. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.E.; Collins, T.W.; Adkins, D.E. Hazardous air pollutants are associated with worse performance in reading, math, and science among US primary schoolchildren. Environ. Res. 2020, 181, 108925. [Google Scholar] [CrossRef]
- Le, H.A.; Linh, V.T.Q. Investigation of Indoor and Outdoor Air Quality at Elementary Schools in Hanoi, Vietnam. VNU J. Sci. Earth Environ. Sci. 2020, 36. [Google Scholar] [CrossRef]
- Vu, D.C.; Ho, T.L.; Vo, P.H.; Carlo, G.; McElroy, J.A.; Davis, A.N.; Nagel, S.C.; Lin, C.-H. Determination of volatile organic compounds in child care centers by thermal desorption gas chromatography-mass spectrometry. Anal. Methods 2018, 10, 730–742. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Risk Assessment Guidance for Superfund (RAGS): Part F. 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 10 May 2021).
- Byun, H.; Ryu, K.; Jang, K.; Bae, H.; Kim, D.; Shin, H.; Chu, J.; Yoon, C. Socioeconomic and personal behavioral factors affecting children’s exposure to VOCs in urban areas in Korea. J. Environ. Monitor. 2010, 12, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Aung, W.-Y.; Noguchi, M.; Yi, E.-E.P.-N.; Thant, Z.; Uchiyama, S.; Win-Shwe, T.-T.; Kunugita, N.; Mar, O. Preliminary assessment of outdoor and indoor air quality in Yangon city, Myanmar. Atmos. Pollut. Res. 2019, 10, 722–730. [Google Scholar] [CrossRef]
- Demirel, G.; Özden, Ö.; Döğeroğlu, T.; Gaga, E.O. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci. Total Environ. 2014, 473, 537–548. [Google Scholar] [CrossRef]
- Lagoudi, A.; Loizidou, M.; Asimakopoulos, D. Volatile organic compounds in office buildings: 2. Identification of pollution sources in indoor air. Indoor Built Environ. 1996, 5, 348–354. [Google Scholar] [CrossRef]
- Hoang, T.; Castorina, R.; Gaspar, F.; Maddalena, R.; Jenkins, P.L.; Zhang, Q.Z.; McKone, T.E.; Benfenati, E.; Shi, A.Y.; Bradman, A. VOC exposures in California early childhood education environments. Indoor Air 2016, 27, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A. Final report on the safety assessment of benzaldehyde. Int. J. Toxicol. 2006, 25, 11–27. [Google Scholar] [PubMed]
- Bennett, D.; Apte, M.; Wu, X.; Trout, A.; Faulkner, D.; Maddalena, R.; Sullivan, D. Indoor Environmental Quality and Heating, Ventilating, And Air Conditioning Survey of Small And Medium Size Commercial Buildings: Field Study; Final Report for CEC-500-2011-043. California Energy Commission: Sacramento, CA, USA, 2011. [Google Scholar]
- Godwin, C.; Batterman, S. Indoor air quality in Michigan schools. Indoor Air 2007, 17, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhde, E.; Schulz, N. Impact of room fragrance products on indoor air quality. Atmos. Environ. 2015, 106, 492–502. [Google Scholar] [CrossRef]
- Vu, D.C.; Ho, T.L.; Vo, P.H.; Bayati, M.; Davis, A.N.; Gulseven, Z.; Carlo, G.; Palermo, F.; McElroy, J.A.; Nagel, S.C. Assessment of indoor volatile organic compounds in Head Start child care facilities. Atmos. Environ. 2019, 215, 116900. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, M.J.; Chung, B.Y.; Bang, D.Y.; Lim, S.K.; Choi, S.M.; Lim, D.S.; Cho, M.C.; Yoon, K.; Kim, H.S. Safety evaluation and risk assessment of d-limonene. J. Toxicol. Environ. Health Part B 2013, 16, 17–38. [Google Scholar] [CrossRef]
- St-Jean, M.; St-Amand, A.; Gilbert, N.L.; Soto, J.C.; Guay, M.; Davis, K.; Gyorkos, T.W. Indoor air quality in Montreal area day-care centres, Canada. Environ. Res. 2012, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Chavez, M.C.; Sarnat, S.E.; Montoya, T.; Holguin, F.; Li, W.-W. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut. 2017, 231, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Su, F.-C.; Batterman, S. Volatile organic compounds (VOCs) in conventional and high performance school buildings in the US. Int. J. Environ. Res. Public Health 2017, 14, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C.; Chang, M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 2000, 41, 109–113. [Google Scholar] [CrossRef]
- Adgate, J.L.; Church, T.R.; Ryan, A.D.; Ramachandran, G.; Fredrickson, A.L.; Stock, T.H.; Morandi, M.T.; Sexton, K. Outdoor, indoor, and personal exposure to VOCs in children. Environ. Health Persp. 2004, 112, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Zuraimi, M.S.; Tham, K.W. Effects of child care center ventilation strategies on volatile organic compounds of indoor and outdoor origins. Environ. Sci. Technol. 2008, 42, 2054–2059. [Google Scholar] [CrossRef]
- Sun, D.; Jia, C. Study on joint management of indoor natural ventilation environment by coupling ceiling fan with air conditioner. J. Asian Archit. Build. Eng. 2021, 1–13. [Google Scholar] [CrossRef]
- Agarwal, N.; Nagendra, S.M.S. Modelling of particulate matters distribution inside the multilevel urban classrooms in tropical climate for exposure assessment. Build. Environ. 2016, 102, 73–82. [Google Scholar] [CrossRef]
Godwin et al. [24] | St. Jean et al. [28] | Raysoni et al. [29] | Hoang et al. [21] | Zhong et al. [30] | The Present Study | |
---|---|---|---|---|---|---|
123TMB | 0.03–0.92 * | ≤1.0 | 0.25–3.32 | |||
124TMB | ≤1.5 | ≤2.7 | ≤4.2 | 0.92–7.44 | ||
135TMB | ≤0.2 | 0.18–1.70 | ||||
Benzene | ≤1.6 | 0.9–6.3 | 0.20–1.68 | ≤2.6 | ≤4.4 | ≤4.39 |
BuB | ≤0.2 | ≤2.20 | ||||
Cumene | ≤0.3 | |||||
DEtB | 0.74–8.61 | |||||
EtB | ≤2.8 | 0.5–14.8 | 0.09–2.11 | ≤2.0 | ≤2.0 | 0.56–4.21 |
EtT | 0.81–5.74 | |||||
NAP | ≤10.3 | 0.3–3.1 | ≤2.9 | 1.37–5.55 | ||
Xylenes | ≤66.8 | 2.5–63.8 | 0.20–3.72 | ≤9.4 | ≤9.6 | 1.87–9.54 |
Styrene | ≤1.4 | 0.56–4.40 | ||||
Toluene | ≤74.6 | 3.2–49.0 | 0.36–17.06 | ≤12.4 | ≤83.8 | 1.20–24.37 |
Nonane | 0.04–0.74 | 0.50–1.61 | ||||
Decane | 0.04–1.88 | ≤4.5 | 0.27–4.47 | |||
UnD | ≤4.3 | 0.45–7.42 | ||||
DoD | ≤5.0 | ≤3.0 | 0.37–3.50 | |||
TriD | ≤1.5 | 0.37–2.60 | ||||
TetraD | ≤17.3 | ≤8.2 | 1.47–4.44 | |||
HexaD | ≤4.1 | ≤2.6 | 1.03–4.77 | |||
Hexanal | ≤52.2 | ≤22.5 | 3.42–22.45 | |||
Heptanal | ≤2.7 | 1.06–5.23 | ||||
Octanal | ≤5.7 | 2.33–13.94 | ||||
Nonanal | ≤16.0 | 6.24–34.05 | ||||
Decanal | ≤22.0 | 4.36–14.51 | ||||
BZALD | ≤9.4 | 4.43–17.69 | ||||
HMS | 0.19–1.67 | |||||
EtHexS | 0.12–0.94 | |||||
BuAc | ≤6.65 | |||||
EtHexanol | ≤3.9 | 1.55–19.67 | ||||
Limonene | ≤45.1 | 0.11–16.56 | ≤81.5 | ≤158.5 | 10.29–50.08 | |
Pinene | ≤35.2 | 0.7–26.2 | 0.04–0.64 | ≤57.7 | ≤55.7 | 4.76–36.30 |
Terpinene | ≤7.1 | ≤47.28 | ||||
PERC | ≤0.3 | ≤7.8 | ≤1.70 | |||
DCB | 0.04–1.80 | ≤2.9 | ≤12.24 |
I/O | ||||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
1,2,3-Trimethylbenzene | >1–10 | >1–10 | >10–50 | >1–10 |
1,2,4-Trimethylbenzene | >1–10 | >1–10 | >10–50 | >1–10 |
1,3,5-Trimethylbenzene | >10–50 | >1–10 | >10–50 | >1–10 |
Benzene | <1 | >1–10 | n.a. | >1–10 |
Butylbenzene | <1 | >100 | >100 | n.a. |
Cumene | >1–10 | <1 | >1–10 | >1–10 |
Diethylbenzenes | >1–10 | >1–10 | >10–50 | >1–10 |
Ethylbenzene | >1–10 | >1–10 | >10–50 | >1–10 |
Ethyltoluenes | >1–10 | >1–10 | >10–50 | >1–10 |
Naphthalene | >50–100 | >1–10 | >100 | >10–50 |
m/p-Xylenes | >10–50 | >1–10 | >10–50 | >1–10 |
o-Xylene | >10–50 | >1–10 | >10–50 | >1–10 |
Styrene | >100 | >1–10 | n.a. | >10–50 |
Toluene | >1–10 | >1–10 | >1–10 | >1–10 |
Nonane | >1–10 | >1–10 | >10–50 | >1–10 |
Decane | >10–50 | >1–10 | >10–50 | >10–50 |
Undecane | >10–50 | >1–10 | >10–50 | >10–50 |
Dodecane | >50–100 | >10–50 | >50–100 | >50–100 |
Tridecane | >100 | >100 | >10–50 | n.a. |
Tetradecane | >100 | >50–100 | >100 | >100 |
Hexadecane | >500 | >500 | >500 | >100 |
Hexanal | >10–50 | >10–50 | >10–50 | >10–50 |
Heptanal | >10–50 | >10–50 | >10–50 | >10–50 |
Octanal | >50–100 | >10–50 | >100 | >10–50 |
Nonanal | >50–100 | >10–50 | >50–100 | >50–100 |
Decanal | >50–100 | >50–100 | >50–100 | >100 |
Benzaldehyde | >1–10 | >1–10 | >1–10 | >10–50 |
Homomenthyl salicylate | >100 | >100 | >100 | >500 |
Ethylhexyl salicylate | >100 | >100 | >100 | >100 |
Butyl acetate | <1 | >100 | n.a. | n.a. |
2-Ethylhexanol | >50–100 | >10–50 | >50–100 | >50–100 |
Limonene | >100 | >100 | >100 | >50–100 |
Pinene | >100 | >100 | >100 | >10–50 |
Terpinene | >100 | >100 | >100 | n.a. |
PERC | n.a. | n.a. | n.a. | <1 |
1,4-Dichlorobenzene | <1 | >1–10 | >100 | >10–50 |
S1 | S2 | S3 | S4 | ||
---|---|---|---|---|---|
Non-cancer risk a | Mean risk value | 0.24 | 0.21 | 0.38 | 0.40 |
95% CI c | 0.21, 0.26 | 0.16, 0.26 | 0.35, 0.42 | 0.37, 0.43 | |
Mean cancer risk of individual VOCs (×10−6) | Benzene | 0 | 0.19 | 0 | 4.53 |
Ethylbenzene | 0.32 | 0.08 | 0.17 | 0.15 | |
Naphthalene | 3.22 | 3.34 | 6.35 | 5.47 | |
DCB | 0.03 | 0.13 | 4.68 | 1.04 | |
PERC | 0 | 0 | 0 | 0.29 | |
Cancer risk b (×10−6) | Mean risk value | 10.74 | 11.24 | 33.59 | 34.43 |
95% CI | 9.39, 12.08 | 8.67, 13.80 | 31.04, 36.15 | 32.28, 36.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.H.; Vu, D.C.; Nguyen, Q.T.; Vo, X.T. Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment. Atmosphere 2021, 12, 1421. https://doi.org/10.3390/atmos12111421
Lu KH, Vu DC, Nguyen QT, Vo XT. Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment. Atmosphere. 2021; 12(11):1421. https://doi.org/10.3390/atmos12111421
Chicago/Turabian StyleLu, Khang H., Danh C. Vu, Quang T. Nguyen, and Xuyen T. Vo. 2021. "Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment" Atmosphere 12, no. 11: 1421. https://doi.org/10.3390/atmos12111421
APA StyleLu, K. H., Vu, D. C., Nguyen, Q. T., & Vo, X. T. (2021). Volatile Organic Compounds in Primary Schools in Ho Chi Minh City, Vietnam: Characterization and Health Risk Assessment. Atmosphere, 12(11), 1421. https://doi.org/10.3390/atmos12111421