Temperature-Dependent Viscosity of Organic Materials Characterized by Atomic Force Microscope
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobson, M.Z. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. Space Phys. 2001, 106, 1551–1568. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Wang, Y.; Gilles, M.K.; Zaveri, R.A.; Bertram, A.K.; Martin, S.T. Lability of secondary organic particulate matter. Proc. Natl. Acad. Sci. USA 2016, 113, 12643–12648. [Google Scholar] [CrossRef] [Green Version]
- Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238–19255. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, M.; Li, Y.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S.N.; Lelieveld, J.; Koop, T.; Pöschl, U. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 2017, 8, 15002. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.P.; Belassein, H.; Martin, S.T. Impactor Apparatus for the Study of Particle Rebound: Relative Humidity and Capillary Forces. Aerosol Sci. Technol. 2013, 48, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Renbaum-Wolff, L.; Grayson, J.W.; Bateman, A.P.; Kuwata, M.; Sellier, M.; Murray, B.; Shilling, J.; Martin, S.T.; Bertram, A.K. Viscosity of -pinene secondary organic material and implications for particle growth and reactivity. Proc. Natl. Acad. Sci. USA 2013, 110, 8014–8019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Sanchez, M.S.; Douet, C.; Wang, Y.; Bateman, A.P.; Gong, Z.; Kuwata, M.; Renbaum-Wolff, L.; Sato, B.B.; Liu, P.F.; et al. Changing shapes and implied viscosities of suspended submicron particles. Atmos. Chem. Phys. Discuss. 2015, 15, 7819–7829. [Google Scholar] [CrossRef] [Green Version]
- Power, R.M.; Simpson, S.H.; Reid, J.P.; Hudson, A.J. The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chem. Sci. 2013, 4, 2597–2604. [Google Scholar] [CrossRef]
- Maclean, A.M.; Smith, N.R.; Li, Y.; Huang, Y.; Hettiyadura, A.P.S.; Crescenzo, G.V.; Shiraiwa, M.; Laskin, A.; Nizkorodov, S.A.; Bertram, A.K. Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of β-Caryophyllene: Measurements, Predictions, and Implications. ACS Earth Space Chem. 2021, 5, 305–318. [Google Scholar] [CrossRef]
- Reid, J.P.; Bertram, A.K.; Topping, D.; Laskin, A.; Martin, S.T.; Petters, M.D.; Pope, F.D.; Rovelli, G. The viscosity of atmospherically relevant organic particles. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.C.; Haddrell, A.E.; Bzdek, B.R.; Reid, J.P.; Bannan, T.; Topping, D.O.; Percival, C.; Cai, C. Measurements and Predictions of Binary Component Aerosol Particle Viscosity. J. Phys. Chem. A 2016, 120, 8123–8137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiland, K.J.; MacLean, A.M.; Kamal, S.; Bertram, A.K. Diffusion of Organic Molecules as a Function of Temperature in a Sucrose Matrix (a Proxy for Secondary Organic Aerosol). J. Phys. Chem. Lett. 2019, 10, 5902–5908. [Google Scholar] [CrossRef] [PubMed]
- Petters, S.S.; Kreidenweis, S.M.; Grieshop, A.P.; Ziemann, P.J.; Petters, M.D. Temperature- and Humidity-Dependent Phase States of Secondary Organic Aerosols. Geophys. Res. Lett. 2019, 46, 1005–1013. [Google Scholar] [CrossRef]
- Chen, G.Y.; Warmack, R.J.; Thundat, T.; Allison, D.P.; Huang, A. Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum. 1994, 65, 2532–2537. [Google Scholar] [CrossRef]
- Van Eysden, C.A.; Sader, J. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. J. Appl. Phys. 2007, 101, 44908. [Google Scholar] [CrossRef]
- Sader, J. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Nino, D.F.; Moy, V.T. Measurement of solution viscosity by atomic force microscopy. Rev. Sci. Instrum. 2001, 72, 2731–2734. [Google Scholar] [CrossRef]
- Boskovic, S.; Chon, J.; Mulvaney, P.; Sader, J. Rheological measurements using microcantilevers. J. Rheol. 2002, 46, 891. [Google Scholar] [CrossRef]
- Song, C.; Zaveri, R.A.; Alexander, M.L.; Thornton, J.A.; Madronich, S.; Ortega, J.V.; Zelenyuk, A.; Yu, X.-Y.; Laskin, A.; Maughan, D.A. Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis ofα-pinene. Geophys. Res. Lett. 2007, 34, L20803. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Kawamura, K.; Lee, S.; Ho, K.; Cao, J. Molecular, Seasonal, and Spatial Distributions of Organic Aerosols from Fourteen Chinese Cities. Environ. Sci. Technol. 2006, 40, 4619–4625. [Google Scholar] [CrossRef]
- Chenyakin, Y.; Ullmann, D.A.; Evoy, E.; Renbaum-Wolff, L.; Kamal, S.; Bertram, A.K. Diffusion coefficients of organic molecules in sucrose–water solutions and comparison with Stokes–Einstein predictions. Atmos. Chem. Phys. Discuss. 2017, 17, 2423–2435. [Google Scholar] [CrossRef] [Green Version]
- Palchoudhury, S.; Baalousha, M.; Lead, J.R. Chapter 5—Methods for Measuring Concentration (Mass, Surface Area and Number) of Nanomaterials. In Frontiers of Nanoscience; Baalousha, M., Lead, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 153–181. [Google Scholar]
- Sader, J.E.; Chon, J.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969. [Google Scholar] [CrossRef] [Green Version]
- Green, C.P.; Sader, J. Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 2002, 92, 6262–6274. [Google Scholar] [CrossRef] [Green Version]
- Telis, V.; Telis-Romero, J.; Mazzotti, H.; Gabas, A. Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Fermeglia, M.; Torriano, G. Density, Refractive Index, and Kinematic Viscosity of Diesters and Triesters. J. Chem. Eng. Data 1997, 42, 919–923. [Google Scholar] [CrossRef]
- Galligan, J.; McKrell, T. Thermal activation and viscosity. Phys. B Condens. Matter. 2000, 291, 131–134. [Google Scholar] [CrossRef]
- Ojovan, M.I. Viscosity and Glass Transition in Amorphous Oxides. Adv. Condens. Matter. Phys. 2008, 2008, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Messaâdi, A.; Dhouibi, N.; Hamda, H.; Belgacem, F.B.M.; Adbelkader, Y.H.; Ouerfelli, N.; Hamzaoui, A.H. A New Equation Relating the Viscosity Arrhenius Temperature and the Activation Energy for Some Newtonian Classical Solvents. J. Chem. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.D.; Ray, K.K.; Tivanski, A.V. Solid, Semisolid, and Liquid Phase States of Individual Submicrometer Particles Directly Probed Using Atomic Force Microscopy. Anal. Chem. 2017, 89, 12720–12726. [Google Scholar] [CrossRef]
- Lee, H.D.; Kaluarachchi, C.P.; Hasenecz, E.S.; Zhu, J.Z.; Popa, E.; Stone, E.A.; Tivanski, A.V. Effect of dry or wet substrate deposition on the organic volume fraction of core–shell aerosol particles. Atmos. Meas. Tech. 2019, 12, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.D.; Morris, H.S.; Laskina, O.; Sultana, C.M.; Lee, C.; Jayarathne, T.; Cox, J.L.; Wang, X.; Hasenecz, E.S.; DeMott, P.J.; et al. Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent Core–Shell Sea Spray Aerosols during Two Phytoplankton Blooms. ACS Earth Space Chem. 2020, 4, 650–660. [Google Scholar] [CrossRef]
- Lee, H.D.; Tivanski, A.V. Atomic Force Microscopy: An Emerging Tool in Measuring the Phase State and Surface Tension of Individual Aerosol Particles. Annu. Rev. Phys. Chem. 2021, 72, 235–252. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Ye, J.; Ohno, P.; Nah, T.; T. Martin, S. Temperature-Dependent Viscosity of Organic Materials Characterized by Atomic Force Microscope. Atmosphere 2021, 12, 1476. https://doi.org/10.3390/atmos12111476
Qin Y, Ye J, Ohno P, Nah T, T. Martin S. Temperature-Dependent Viscosity of Organic Materials Characterized by Atomic Force Microscope. Atmosphere. 2021; 12(11):1476. https://doi.org/10.3390/atmos12111476
Chicago/Turabian StyleQin, Yiming, Jianhuai Ye, Paul Ohno, Theodora Nah, and Scot T. Martin. 2021. "Temperature-Dependent Viscosity of Organic Materials Characterized by Atomic Force Microscope" Atmosphere 12, no. 11: 1476. https://doi.org/10.3390/atmos12111476
APA StyleQin, Y., Ye, J., Ohno, P., Nah, T., & T. Martin, S. (2021). Temperature-Dependent Viscosity of Organic Materials Characterized by Atomic Force Microscope. Atmosphere, 12(11), 1476. https://doi.org/10.3390/atmos12111476